
NASA-CR-192636

DEVELOPMENT

UNSTEADY

OF ITERATlVE TECHNIQUES FOR
SOLUTION OF

COMPRESSIBLE VISCOUS FLOWS

Grant NAG-l-1217

Final Report covering the Period

February 14, 1991 - February 13, 1993

THE

d
,Jr

Submitted to

NASA t_angley Research Center

Hampton, VA 23665

Attn: Dr. Woodrow Whitlow

Prepared by

Duane Hixon, Graduate Research Assistant

L. N. Sankar, Professor

School of Aerospace Engineering

Georgia Institute of Tevhnology, Atlanta, GA 30332-0150

March 1993

(NA_A-C _-I_-,3 6"_6) DEVELOPMENT CF

IT_PATIVF TECHNIOUFS FOR THE

SCLUTIUN nF UNSTEADY CCMPRESSI6LE

VTSC_3US FLC;VE, Final Technical

_,_por_, 14 :,:h. 1991 - 13 FeD. 1993

(Goorc]i a rqst., of rech.) 162 p
G3/34

N93-23?2#

Unclas

015138L

TABLE OF CONTENTS

II

III

IV

V

VI

A

B

C

D

E

F

G

INTRODUCTION 1

MATHEMATICAL FORMULATION OF THE NAVIER-STOKES

EQUATIONS 3

NUMERICAL FORMULATION 17

2-D RESULTS 44

3-D RESULTS 56

CONCLUSIONS AND RECOMMENDATIONS 67

TRANSFORMATION TO CURVILINEAR COORDINATES 69

DISCRETIZATION IN TIME AND SPACE 76

LINEARIZATION OF THE DISCRETIZED EQUATIONS 79

SOLUTION PROCEDURE FOR APPROXIMATE

FACTORIZATION 84

ARTIFICIAL VISCOSITY 86

THE BALDWIN-LOMAX TURBULENCE MODEL 90

INITIAL AND BOUNDARY CONDITIONS 93

REFERENCES 99

ILLUSTRATIONS 101

CHAPTER I

INTRODUCTION

During the past two decades, there has been significant progress in the field of

numerical simulation of unsteady compressible viscous flows. At present, a variety of

solution techniques exist such as the transonic small disturbance analyses (TSD) [e.g. Ref.

1-3], transonic full potential equation-based methods [e.g. Ref. 4-6], unsteady Euler

solvers [e.g. Ref. 7-8], and unsteady Navier-Stokes solvers [e.g. Ref. 9-12]. These

advances have been made possible by developments in three areas: (1) Improved numerical

algorithms, (2) Automation of body-fitted grid generation schemes, and (3) Advanced

computer architectures with vector processing and massively parallel processing features.

Despite these advances, numerical simulation of unsteady viscous flows still

remains a computationally intensive problem, even in two dimensions. For example, the

problem of dynamic stall of an oscillating NACA 0012 airfoil using state of the art

alternating direction implicit (ADI) procedures presently require between 10,000 and

20,000 time steps per cycle of oscillation at low reduced frequencies when the viscous flow

region is sufficiently resolved [Ref. 9]. In three dimensions, unsteady Navier-Stokes

simulations of a helicopter rotor blade in forward flight requires over 30,000 time steps or

more for a full revolution of the rotor [Ref. 10]. In other unsteady flows, such as the high

angle of attack flow past fighter aircraft configurations, a systematic parametric study of the

flow is presently not practical due to the very large CPU time needed for the simulations

[Ref. 13]. Thus, it is clear that significant improvements to the existing algorithms, or

2

dramaticimprovementsin computerarchitectureswill beneeded,beforeunsteadyviscous

flow analysesbecomepracticalday-to-dayengineeringtools.

One scheme that has been of recent interest is the Generalized Minimal RESidual

(GMRES) method originally proposed by Saad and Schultz (Ref. 14). This procedure

uses a conjugate gradient method to accelerate the convergence of existing flow solvers.

GMRES was added to existing steady flow solvers by Wigton, Yu, and Young (Ref. 15),

and to an unstructured grid flow solver by Venkatakrishnan and Mavriplis (Ref. 16). Saad

has also used a similar Krylov subspace projection method on a steady, incompressible

Navier-Stokes problem and an unsteady one dimensional wave propagation equation (Ref.

17). To our knowledge, GMRES has not been applied to multi-dimensional unsteady

compressible flow problems.

In this work, the GMRES scheme has been considered as a candidate for

acceleration of a Newton iteration time marching scheme for unsteady 2-D and 3-D

compressible viscous flow calculation; from preliminary calculations, this will provide up

to a 65% reduction in the computer time requirements over the existing class of explicit and

implicit time marching schemes. The proposed method has been tested on structured grids,

but is flexible enough for extension to unstructured grids. The described scheme has been

tested only on the current generation of vector processor architectures of the Cray Y/MP

class, but should be suitable for adaptation to massively parallel machines.

3

CHAPTER II

MATHEMATICAL FORMULATION OF THE NAVIER-STOKES

EQUATIONS

This work is mainly concerned with calculating unsteady, viscous, compressible

flow. Thus, the full Navier-Stokes equations are solved in two or three dimensions.

In the following sections, the two dimensional Navier-Stokes equations are

developed in both Cartesian and curvilinear coordinates, and then extended to 3-D.

2-D Governing Equations in Cartesian Coordinates

Fluid motion can be described using the concept that mass, momentum, and

energy are conserved. Given this, the governing equations of fluid flows can be written in

a variety of different forms. The form used in this work is the conservation form, which is

written in general form as:

(2.1)

The conservation form is used for this work because numerical methods based on

the nonconservation form may not conserve flux properties properly across physical

discontinuities such as shocks. The nondimensionalized Navier-Stokes equations may be

written in conservation form as:

4

1

(2.2)

where

--.

pu
E

pu

2
pu +p

G

f}w

puw

2
pw +p

w(e+p)

R

[;xx

R4

i

i
T

T4 (2.3)

and:

z =(X+21a)Ux+XWz

Zxz= _Uz + wx)

_zz= (X + 2._Wz+ _.ux

R 4= u'_xx+ w'_ + "_ _1_ xa

" . o_ 2
T4 = UZxz + w't=+ Pr_-l_} (2.4)

Also,

5

a =_- - +w

P (2.5)

These are the 2-D Navier-Stokes equations for viscous, compressible fluid flow.

In these equations, p is the density, u and w are the velocity components, e is the total

energy per unit volume, a is the speed of sound for a perfect gas, p is the pressure, and _ is

the ratio of specific heats (which is taken to be 1.4). The Reynolds number is Re and the

Prandtl number is Pr. Using Stokes' Hypothesis, the bulk viscosity coefficient _. is given

as_

(2.6)

For high Reynolds number flow, where turbulence occurs, the dependent

variables are decomposed into steady and fluctuating components, and the equations are

time averaged. The time averaging process gives rise to new terms which may be

interpreted as turbulent stresses acting on the fluid. These are called Reynolds stresses.

Using Boussinesq's concept, these stresses can be related to the rate of mean strain by

means of an eddy viscosity. With this, an effective viscosity, consisting of the laminar

viscosity and a computed eddy viscosity, is defined. More information on the eddy

viscosity formulation is given in the section on numerical formulation.

To obtain the inviscid (Euler) flow equations, the right hand side of Eq. (2.2),

which contains the viscous terms, is removed.

6

The Navier-Stokesequationshave beennondimensionalized by scaling the

dependent variables by the freestream density and speed of sound and the independent

variables by the chord length c:

_.= tm

-,- X
X_m

C

" Z
Z_

¢

•- p
"p'-m

P®

-- U
U_N

a,_

-., w

a,o

-, e
e=

(2.7)

With this choice of nondimensionalization parameters, the Reynolds number is

_iven as:

p_,a_c
Re =

ta® (2.8)

Note that this Reynolds number is based on the freestream speed of sound, and

thus it must be scaled by the freestream Math number to match a Reynolds number based

on the freestream velocity.

dropped.

Fromthispoint, all quantifieswill benondimensionalized, so the tilde (~) will be

fo1Tn aS:

3-D Governing Equations in Cartesian Coordinates

The nondimensionalized 3-D Navier-Stokes equations are written in conservation

• >¢

oa+o_E+a_+a/;=__iR+a_s+ol;\ ' (2.9)

where:

_

pu

pv

g

pu

2
pu +p

puv

puw

:/
0

R=

F _

pv

puv

S i

2
pv +p

pvw

v<e+v)

0

'Zxy
i

T=

_ryy

"ryz

S5/

g

0

_xz |

"tyz

"gT._

_Ts)

pw

puw

pvw

2
pw +p

w<e+p>

(2.10)

and

xx=<.+ 2_t)u x+ _Vy+ _.w z

Zxy= V<Uy+ v_

-txz= _u z + w_

Xyy= _Ux+ <_ + 2_>V y+ _.W z

_== _.U× + _.V y+ <_ + 2_t>W z

Ss= u'_xy+ V'_yy+ w'tyz+ tt 0ya2Pt- >
T5= u_xz + v_Yz+ w_zz + _t 02

(2.11)

In B-D,

p=(y-1 -_, +v +w

a =_- - +v +w

P (2.12)

Again, we use Stokes' Hypothesis to define the bulk viscosity, _., as shown in

Eq. (2.6).

As in the 2-D derivation, the dependent variables are decomposed into steady and

fluctuating components, and the equations are time-averaged. This gives rise to Reynolds

stresses, which are related to the rate of mean strain using Boussinesq's concept. With

this, an effective viscosity is defined, which consists of the molecular viscosity and a

computed eddy viscosity that represents the contribution of the turbulent stresses to the

mean flow. More information on the eddy viscosity formulation is given in the section on

numerical formulation.

The nondimensionalization has been carried out in an identical manner to the 2-D

equations.

Transformation of the 2-D Equations to Curvilinear Coordinates

From the viewpoint of computational accuracy, a uniform Cartesian grid is the

most desirable geometry. However, most problems of interest have bodies which are not

easy to fit a Cartesian grid about. Accurate computation of physical flow features can also

give rise to conflicting needs. For example, resolving the boundary layer requires a fine

grid near the body. If a uniform grid spacing is used, this puts many more grid points than

are needed in the inviscid flow region, which is farther away from the body. These

unnecessary grid points increase computation time and memory immensely. For easy

application of boundary conditions and to accurately capture the physics of the problem, it

is desirable to have a grid which wraps around the airfoil and has many points near the

body, but is stretched in order to put fewer grid points in regions where they are not

necessary.

To resolve these conflicting needs, the governing equations are transformed into

generalized curvilinear coordinates. This transformation maps a stretched, body-fitted grid

in the physical plane (x,z,t) to a uniform Cartesian grid in the computational plane (g,_,x).

This transformation is one-to-one (each point in the physical plane has a corresponding

10

point in the computational plane), except along any cuts needed to make the physical plane

simply connected.

The general transformation between the two planes is given as:

E = E(x,z, t)

= _(x,z,t)

1;=t
(2.13)

which transforms the physical domain (x,y,t) to the computational domain (_,_,x).

Using this transformation, the curvilinear flow equations can be obtained; the

detailed derivation is given in Appendix A. After the transformation, Eq. (2.2) is written

as:

(2.14)

where:

11

1

q=T

P

pu

pw

e

pu

puU + _

pwU + _p

1

R= T

0

_xR 4"t- _zT4

1

; T= T

G=T:

(0

pw

pu W + _p

pw w + _

k _4+ _zT4
(2.15)

with the contmvariant velocities U and W given as:

U = :_t+ _J_ + _j_w

w = _t + _ + _w
(2.16)

The Jacobian of transformation is defined as:

(2.17)

The transformed viscous terms become:

12

3 2

x._= _w_ _w 0- _+ _

. 2 _a 2)
(2.18)

The metric quantities can be related to the physical quantifies by these relations:

_= Jzt

_z= qxg

,=-x- z_

x= -lz

-- Jx

L =-×4;x-z4;_
(2.19)

Transformation of the 3-D Equations to Curvilinear Coordinates

The 3-D Navier-Stokes equations are transformed into curvilinear coordinates in a

similar manner. This time, the general transformation is given as:

lg= _(x,y,z,O
_1= _(x,y,z,t)

= _(x,y,z,t)

x = t (2.20)

13

which transforms the physical domain (x,y,z,t) to the computational domain (_,_,_,1:).

Using this transformation, the curvilinear flow equations can be obtained; the

detailed derivation follows that given in Appendix A. After the transformation, Eq. (2.9) is

written as:

O_q+ O_E+ OnF+ O_G=R_e O_R + OnS+ O_T)
(2.21)

where:

P

IDa

pv

pw

e

pu pv

pu V + _xP

pv V + _q_

pwV + Vl_

14

G_

0

0

0

(2.22)

with the contravariant velocities U, V, and W given as:

U = _t + _u + _yv+ _zw

V =tit+ vlda + *lyv + Vlzw

w =_t + L,u + _yV+ _w (2.23)

The Jacobian of transformation is defined as:

15

1

y_{x_zn- xnz_)+y,_xgz_-xtz_)+y_{xnz_-x_z.) (2.24)

The transformed viscous terms become:

_yV _ + VlyVn + _yV _ - +_z w

- 3_w_ +%yy= _yV [+ TlyV_1+ _yV _ - _-(_xU [+ nxU vl llzW n

•_= _z_+n_n+_ _- _+n_ n +nyvn

$5= UXxy+ VXyy+ W_yz+ pr_y.1)(_?_a2+ vl?,a2 + _?_'a 1

Ts= tr_xz+ VXYz+ v_z+ Pr_-l)_ z_ + (2.25)

The metric quantities can be related to the physical quantifies by these relations:

_×-- J(y_zr.- Y_Z_

_z-- J(x_l;- Y,ff_)

_= l(z_Y_-Y_Z0

_z= J(y_x; - x_Y0

_×= l(y_z,_-z_y_

=j(z-_z0
_= J(x_y,_-y_x,_

_t = -X_x- y_y- z,_

Tit-- -x.71x- Y.71y- z.71_

t = "x4×- Y4_y- Z'_z (2.26)

16

17

CHAPTER III

NUMERICAL FORMULATION

In this chapter, two time-accurate finite difference schemes are described for

numerically integrating the equations given in the previous chapter. One formulation

discussed uses an Alternating Direction Implicit (ADI) Newton iteration scheme at each

time step, while the other uses an LU-SGS scheme with Newton iteration. Then, the

GMRES formulation is explained, and several variations of the method are described. To

simplify the derivation, only the two dimensional equations are considered; the differences

between the 2-D and 3-D schemes are mentioned as they are reached.

Iterative ADI formulation

The underlying code in the GMRES formulation is a Newton iteration ADI

solver. This code is used as a function evaluator for the GMRES, as described in the next

section. A brief outline of the ADI Newton algorithm is given below.

Discretization in Time and Space

The 2-D Reynolds averaged Navier-Stokes equations written in curvilinear form

are given as"

18

04t+ O_E + O_G= R_e OgR + O_T>
(3.{)

This equation is discretized by using the Euler implicit scheme, which is first

order accurate in time and second order accurate in space. The time derivative is

approximated by a first order forward difference, while the spatial derivatives are

represented by second order central differences. Using Taylor series expansions, Eq. (3.1)

can be rewritten:

Ax

= Ax + R--_e _
(3.2)

where O(Ax,A_2,A_2) indicates that this expression is first order accurate in time (second

order terms are truncated), and second order accurate in space. In Eq. (3.2), 'n' refers to

the time level and 'k' refers to the Newton iteration level at that time step. The details of

this derivation are given in Appendix B.

Linearization of the Governing Equation

Given the known flow variables at the 'n' time level and a previous guess for the

flow variables at the 'n+l' time level, equation set (3.2) can now be iterated upon to obtain

the flow variables at the 'n+l' time level. Unfortunately, this set of algebraic equations are

coupled and highly nonlinear, making them very difficult to solve. To make these

equations easier to solve, the convection terms E and G are linearized about time level

19

'n+l' anditeration level 'k' by meansof Taylor series. The linearizationprocedureis

describedin detail in Appendix C. When this is substitutedinto (3.2), the linearized

equationsare written as:

{I+ A'tbgAn+l'k+ Ax_cn+Lkt{Aqn+l'i_ =

(3.3)

This equation set is first order accurate in time and second order accurate in space.

The matrix to be solved is in block pentadiagonal form.

Approximate Factorization of the Governing Equation

Equation (3.3) is a large, sparse pentadiagonal block matrix equation. This is still

very expensive to solve, requiring large amounts of storage and computation. Instead of

solving Eq. (3.3) directly, it is factored into a series of one dimensional block tridiagonal

systems of equations, using the approximate factorization technique of Beam and Warming

(Ref. 18).

In this method, the left hand side of Eq. (3.3) is approximately factored into two

operators:

(I+Axb An+Lkt(I+Axb Cn+l {Aqn+Lk)=
(3.4)

where

20

RHS n+l'k} =

(3.5)

The last term on the right hand side of Eq. (3.4) is second order in time, and can

thus be dropped without degrading the formal first order time accuracy of the scheme. This

gives the factored set of equations to be solved:

{I+ Axb_An+Lkl{I + Axb_Cn+1_{Aqn+1"k} = A_{RHS n+1"k}(3.6)

Details of the solution procedure are given in Appendix D.

In solving Eq. (3.6) for subsonic and transonic flows, it is necessary to add

artificial viscosity to damp the numerical oscillations. The numerical viscosity model

proposed by Jameson, Turkel, and Schmidt, and modified by Swanson and Turkel (Ref.

19) is used. The details of this model are given in Appendix E.

When viscous flows at high Reynolds numbers are solved, it becomes necessary

to consider turbulent effects. While the present equations can directly model turbulent

motion, the small time step and dense grid that is required for accuracy make the

computational cost prohibitive: To keep a reasonable grid spacing, Eq. (3.3) is time-

averaged and the well-known Baldwin-Lomax algebraic turbulence model is employed to

represent the turbulent stresses. The details of the model are given in Appendix F.

Finally, to solve Eq. (3.6), initial and boundary conditions are required.

Appendix G describes these oanditions and their implementation.

21

LU-SGS Formulation

The LU-SGS solver was only implemented in the 3-D GMRF_.S code. However,

to save space, the 2-D version of the algorithm will be described.

To derive the numerical formulation, we start with the linearized form of the 2-D

governing equations, Eq. (3.3):

(I + azb_A n+Lk + azs_cn+Uc/(aqn+_/ = A_RHSn+I'k/ (3.3)

The RHS term is defined in Eq. (3.5). The left hand side of Eq. (3.3) can be

factorized in this manner.

I+0A 8iA+ + _iC++ b_A- + b_C t(Aqn+l_/

where 0 is a user-defined scalar (>0.5). Also, 8 + represents a forward difference, and 8-

represents a backward difference. For example:

- Ai-Ai. 1
8gA =

a_
+ A i+1- A i

6gA -
Ag (3.8)

22

In Eq. (3.7), A +, A-, B +, and B- are constructed so that (+) matrices have

positive eigenvalues, and (-) matrices have negative eigenvalues. The definition of these

matrices are very important to the success of the LU method. In this formulation, the

following definitions are used, from Ref. 23:

A+=_A + OZAI)

A-=_A- _KAI)

(3.9)

where I_ is a user-defined parameter, and:

2

_A= IuI÷a4_2x+_z
(2-D)

2

xA=Iul+a_/2 a 2_,,+ _y+ _z
2 2 2

_.B=IVl+a_qx+ ny+n_, (3-D)

2 2

(3.10)

These are the eigenvalues of the A and C matrices.

Following the development given in Ref. 23, Eq. (3.7) can be written in

eonservative form as:

23

A n+_k
q_j + OAT i

3

i_xq_j - Ai_!_q_. +
- j

- n+1_]_- . n+1_< A_qi _ +Ai+_aqi+_ -

._..+. n+l,k + _

L_jaq_j - Ci,j.1_q.,j +

C- -- n+l,k C._(I
_j+#qi, j+1 - li j (3.11)

For convenience, the superscript 'n+l,k' is omitted for the rest of this

development.

Next, Eq. (3.11) is simulated using forward and backward sweeps, which is

written as:

Aq_IA _- A[jI+

t

A i+'LjAqi+l,j + RH n+1,k_

(3.12)

and

A n+l,k

qi, j + OAx

A ,m.k[., .
q_ LA.

A, _ n+1,k
i_l_aqi_14 + A_Aq_+_+

A n+l,k[..+
% [%- ¢._]-

C+ _ n+l,k
i,j_laqi,j_l + C'_+ 1Aq_j+l

(3.13)

24

If Eq. (3.12) is subtracted from Eq. (3.13), the following is obtained:

A n+l,k
qia + 0Ax

A n+l,k [_ +
qi,j [A i,j" A'_] -_

4. • n+l.k

Ai__ aqi_ _ +

A n+l,k[,.,4.
q, [%_- C._]-

C4. . n+l,k

_)-laq_J -1)

Aq_j + 0A'r Aqt4 - A +

Aq_jtcia- C:j]

(3.14)

This may be written as:

n+l,k.I + 0A_biA4. + b_C4.-A--C- / /(Aqn+'_}

_n+l,k], •= I+0A4A4.+C4.-A--C-J _{aq} (3.15)

where:

+b;C + +C Aq }I+ 0A bgA- A + * *

= Ax{ RHS n+Lk} (3.16)

If we use the plus and minus matrices defined above in Eq. (3.10), then Eq.

(3.15) becomes:

25

_n+l,k)

(3.1.7)

Equations(3.16)and(3.17)togetherdefinetheLU-SGSprocedure.In order to

change Eq. (3.16) and (3.17) into a Newton-like iteration, the time step is increased to

infinity and 0 is set equal to one. This removes the requirement for numerical investigation

to determine an optimal time step. The Newton-like iterative procedure is written as:

n+l,k

(3.18)

This procedure is used for all LU-SGS computations described in this report.

GMRES Formulation

Description of GMRF_S algorithm

The iterative ADI or LU-SGS formulation given above may be expressed in this

way:

26

qn+l,k+l = F(qn+l_) (3.19)

Thus, given a guess for qn+l,k, the solver returns a (hopefully) better

approximation, qn+l,k+l to the correct solution. When the solution has converged (i.e.,

qn+l,k = qn+l,k+l), then:

n+l,k

Eq. (3.19) may be rewritten as:

n+l,k+l n+l,k
q =q + Aq

= qn+_k + a_
(3.21)

where:

and

In words, using the latest guess for the solution at the new time level, the original

code computes a corrected solution qn+l,k+l, which is equivalent to moving a distance a

in direction d from the initial point qn_I,k.

27

In a twodimensionalproblem, the Aq vector has (imax * kmax * 4) entries. The

correction vector may change only one flow variable at one point in the flow field (e.g., pu

at i=5, k=13), and leave the rest alone. This is one possible direction that the code could

move in. If another variable at another point is changed instead (e.g., p at i=120, k=2),

this would result in the code moving in a second direction which is orthogonal to the first.

Thus it can be seen that there are a total of (imax * kmax * 4) possible orthogonal directions

in a 2-D problem, and (imax * jmax * kmax * 5) directions in 3-D.

The ADI and LU-SGS iterative codes both consider only one direction at a time.

In words, they start from an initial point, compute a single likely direction, and move some

distance in this direction to the next point, where the same process is repeated.

The GMRES solver works in a different way. GMRES computes the slope of the

residual in a number of onhogonal directions from the initial point, and uses this

information to make a more informed move from the initial point. In this procedure, the

underlying iterative solver serves as a 'black box' function evaluator (i.e., given a set of

input flow properties, the solver sends back an updated set of flow properties) to provide

GMRES with information to compute the set of flow properties that will satisfy Eq. (3.20).

Note that GMRES does not change with the number of equations or the method

of solution of the underlying code. The only change in GMRES for 2-D to 3-D is the

length of the vectors; there is no change in the GMRES code between the ADI and LU-

SGS solvers.

A GMRES step follows this procedure:

First, the initial direction is computed as

_1 = M(q n+I'k) (3.24)

28

and normalized as

(3.25)

Thus the first direction is the direction in which the underlying solver would have

moved from the initial point.

To compute the remaining search directions (j=1,2,..,J-1), the GMRF_ solver

first moves a small distance in the jth direction and calls the underlying solver in order to

compute the residual at this point. Then, the slope of the residual in the jth direction can be

numerically evaluated using:

M-"(q, d")= M(q + Ed)- M(q)
¢ (3.26)

where E is taken to be some small number. In this work, E is taken to be 0.001.

Taking the dot product of this derivative with a unit direction vector will reveal the

component of the derivative in that direction:

= (_'(q_l,k ; dj), d_ (3.27)

If the components of the derivative in all of the known directions are subtracted

from the derivative, what results is a new direction vector that is orthogonal to all of the

known directions:

29

j+l = M--(qn+l'k ;)- E b_ _i
= (3.28)

Normalizing the new direction vector will give the component of the derivative in

the new direction:

13+1,j= I]_+1l[(3.29)

and the unit vector in the new direction may finally be computed as:

(3.30)

Since GMRES uses the underlying flow solver to determine the search directions,

the success and speed of the GMRES solution method depends greatly on the original flog'

solver's ability to help define useful direction vectors, and hence a subspace that contains

much of the error components.

After obtaining the search directions, the solution vector is updated using

1

qn+l,k+l =qn+l,k + _ aj_j

j..1 (3.31)

where the undetermined coefficients aj are chosen to minimize:

30

II 'IF[[M(qn+l'k+l) [[2 -- M(qn+l'k + E aj_j)

j=l

I ' -IF" M(qn+l"k) + Z aJM''(qn+l'k ; dj)
j=l (3.32)

This equation is minimized as follows:

Let Dj be the matrix of directions {d 1 , d 2, d 3, -.-, dj}.. Also, let Fj be the

matrix of directional derivatives given as {M 1 , M2, M 3 Mj}, where:

--qP

Mj = M(q"+l_; dr)" (3.33)

Then Eq. (3.28) may be rewritten in matrix form as:

M j = Dj+IB (3.34)

Here, B is the (J+l) x (J) matrix:

blA bL2 _,3

o _.2 _a,3

B 0

0

"%

bl,J-2blJ-1 blJ

b2,1-262J-; b22

b3,J-2b3j-I b3J

bJ-_,l-2 bJ-U-1 bJ-lJ

o bJJ-1 bj,j

0 0 b/+lj (3.35)

31

Note that at this point, bJ+l,J is not yet known. Saad and Schultz give the

following formula for evaluating this term without another function evaluation:

J

i-1 (3.36)

At this point, Eq. (3.32) is rewritten:

II ' -IIM(qn+l, k) + _ ajM--(qn+l'k ; dJ)

= I[M(qn+l'k)+MAI_ (3.37)

where A is the vector {a 1 , a2, a 3 , aj} T.

direction and Eq. (3.34), Eq. (3.37) becomes:

Then, using the definition of the first

 IIGIdl IdA)II

(3.38)

where e is the first column of the (JxJ) identity matrix.

32

This least squares problem is solved using the QR algorithm in UNPACK.

Residual Definition for GMRES

It is important to remember here that GMRES is a completely separate routine

from the rest of the code. GMRES is designed to minimize a given residual, which is

calculated by the underlying code. This means that GMRES does not necessarily follow a

physically meaningful path to the correct answer. For example, given a steady flow

problem, the original code (with the Newton iteration disabled, because time-accuracy is

not required) will march in time until a steady flow is obtained. On the way to the answer,

the flow field at each time level, while not necessarily representing the real answer at that

time level (especially for local time stepping), will follow the physics of the problem.

GMRES, on the other hand, is given this definition for the residual:

M(qn) = qn+l _ qn

= F(qn)_ qn (3.39)

where F(q) is the result given by the underlying solver given an input q. GMRES will get

the same answer as the pseudo-time-marching code (in a hopefully shorter time), but it will

do this by simply trying to drive the residual to zero as quickly as possible instead of

following the physics of the flow.

Thus, with GMRES, it is important to define a level of residual where there is

confidence in the answer. This is especially true in the 2-D inviscid transonic calculations

that were performed. In these runs, the GMRES solver would attain a certain level of

convergence, depending on the number of directions employed, and then stop converging.

It was hypothesized that the GMRES solver found local minima in the residual that it could

33

not escapefrom without havingmore directions. This was supported by the behavior of

the solver as directions were added: a lower residual was obtained, and a better solution

was also calculated.

The solution, however, varied by up to 20% depending on the number of

directions used (and thus the level of convergence reached). An investigation into the

residual levels necessary for reliable answers is needed.

In these investigations, several residuals were defined for GMRF__,S. In steady

flow cases, Eq. (3.39) was used, while in unsteady calculations, Eq. (3.20) was

employed.

Additional Techniques Employed with GMRES

The GMRES routine on its own gives very satisfactory convergence properties.

The major drawback to this method is the amount of memory that is required: for an 'N'

direction iteration, 'N' complete flow fields must be stored. In two dimensions, this is not

too much of a problem; but when the code is extended to three dimensions, the memory

required quickly becomes horrendous. Therefore, several methods were tried in the 2-D

and 3-D codes to cut down the amount of memory required for the GMRES iteration.

These are detailed below.

Newton iteration on GMRE_ at Each Time Step (Restart).

In an attempt to cut down the memory necessary to run GMRES, a Newton

iteration was used at each time step on the GMRE, S evaluation. This was a practical way of

cutting the memory in half. For example, instead of using one GMRE, S(10) iteration (a 10

direction GMRES iteration) at each time step (and storing the equivalent of 10 complete

flow fields), two GMRE,S(5) iterations (storing only 5 flow fields) were performed. In

this method, the first GMRES(5) iteration gives an updated q solution for the 'n+l' time

34

level, and this is used as the input guess for the next iteration (which is still at the 'n+l'

time level). It was found that the residuals for this 'restart' method were equivalent or

better than the residuals for the single evaluation method. A flow chart of a time step

follows:

1) Start with a guess for qn+l: qn+l,0.

2) Perform a GMRES(5) iteration on qn+l,0 to get qn+l,1.

3) Use qn+l,1 as the input for another GMRES(5) iteration to get qn+l,2.

4) Go to the next time step.

This method trades more CPU time for less memory. Note that at time levels

with smooth, attached flow, the second GMRES(5) iteration may not be necessary. To

take advantage of this, a user-defined residual tolerance was implemented which allowed

the second iteration to be skipped when the residual from the first iteration was log,

enough.

Multigrid GMRES iteration (2-D)

In order to further understand the GMRES procedure, several variables were

investigated. First, the weighting coefficients of the first 20 directions during a dynamic

stall loop were plotted. This showed the relative importance of the directions in lowering

the residual at each time step. It was seen that the first 10 directions were by far the most

important, with the next 10 directions playing an ever-decreasing role in the solution (i.e.,

the coefficient for the 20th direction was usually two orders of magnitude smaller than that

of the first direction). Only at a very few steps were the higher directions weighted more.

Next, the first 20 directions of a GMRES iteration on an airfoil in dynamic stall at

a single time step were plotted. This showed that the first directions were very smooth,

35

while the higher directions looked more jagged and noisy. At this point, it was

hypothesized that a multigrid method could help speed convergence. Since the first

directions were smooth (low frequency error), it was thought that a coarse grid evaluation

with few directions could reduce this error more quickly.

The multigrid method worked as follows: a V pattern was adopted using two grid

levels, with a GMR.F__(5) evaluation at each step in the pattern. On the fine grid, the

residuals were defined as before (Eq. (3.36)), while the coarse grid used a Full

Approximation Storage scheme residual:

M(q)c -- F(q)c-qc + M(q_)f--c-M(q_)c (3.40)

where the subscript e denotes an evaluation on the coarse grid, and the subscript f->e

refers to a variable transferred from the fine grid to the coarse grid. The additional last two

terms in Eq. (3.40) are the residual from the first fine grid GMRES(5) evaluation. The first

of these terms is the residual from the fine grid transferred to the coarse grid, while the

second term is the residual evaluated on the coarse grid. These last two terms help to

reduce any errors in the correction vector due to the grid switch.

At each time step, the following procedure is performed: first, a GMRES(5)

iteration is done on the fine grid. The flow variables are updated and dropped to the caarse

grid by averaging the fine grid variable values across the volume of the coarse grid. Then,

a coarse grid GMRES(5) iteration is performed, using Eq. (3.40). At the end of the coarse

grid evaluation, the correction vector is transferred back to the fine grid using bilinear

interpolation, and is added to the fine grid flow variables. At this point, another

GMRE, S(5) iteration is performed on the fine grid.

36

Parallel Steady Flow Analyses

After the GMRES code was investigated in 2-D on a sequential computer, it was

ported to an Intel iPSC/860 parallel supercomputer for implementation in parallel. It was

thought that with GMRES, communication bottlenecks in the distributed-memory algorithm

may be reduced or eliminated.

Initially, the 2-D ADI code was reconfigured to run on an Intel iPSC/860. The Intel

is a MIMD (multiple instruction/multiple data) machine; this means that the individual

processors not only work with different subsets of the data, but each processor may

independently execute different instructions at the same time.

The Intel is a distributed memory machine, where each individual processor has its

own separate memory. In order to obtain information from another processor, a message-

passing routine must be explicitly coded. Since message passing is very time-consuming

on this machine, the most efficient code will usually have the least number of messages.

In order to accomplish this goal, the computational domain was divided up as

shown in Figure (III. 1). In this strategy, each subdomain overlaps its neighbors by two

normal lines. Each processor performs an ADI step in its section of the domain; the

overlapping lines are updated by passing messages at the end of each step.

The sequential version of the code is directly analogous to a single processor with a

single computational domain. The main thrust of this work was to recover the sequential

solution with a multiple processor machine with multiple computational domains.

Since an odd number of points is necessary to ensure that there is a leading edge

point on the airfoil, the middle two processors both compute the leading edge line flow

values. These are then averaged at the end of each step.

37

i c°mpu dbYl__..
Processor #4

N_ C?2PUstoed b7 1....M _ _ ProcessorC°mputed#1bY

Figure (III. 1):

Computational Domain Decomposition for a Four Processor MIMD Machine.

Iterative ADI Routine

It should be noted that a parallel ADI step is quite different than that of the

sequential version. A description of the current implementation follows:

First, the order of the sweeps is reversed:

n+l,k_/, n+l,k_

{ I + Axs_cn+l'k){I + Axh_A /taq / = A_{ R MS n+l'ldl},(3.41)

and the _ sweep is performed. Since this sweep solves the k lines of the computational

domain, line by line, the result is the same as for the sequential version:

(3.42)

38

At this point, the sequentialvaluesfor Aq* areknownthroughoutthe flow field.

Next, thesecondsweepis performed:

(I+ A-rheAn+l'k){Aqn+l'k} 1*_=_Aq [
(3.43)

This sweep requires a bit more work to obtain an answer that is identical to the

sequential solution. In the sequential code, which this is based on, the value of Aq is

tacitly assumed to be zero at the boundaries (wall, freestream, and wake), as is the value of

Dq lines which are computed by
this processor, and transferred to
neighboring processors for use
in the next iteration

O

Ca,

O

i
I

Computational

Domain

of Processor

I

Boundary values of dq, which [
are updated from neighboring Iprocessors after every iteration.

Im

O

'¢I
O

Z

Figure (I11.2): _ Sweep Iteration Used for MIMD Computer

39

Aq*. This is adequatefor a singledomain; however,when theflowfield is divided up

betweenprocessors,it is seenthatthevalueof Aqis obviouslynot zeroon boundarylines.

To circumventthisproblem,the_ sweepis iteratedupon,with theboundaryvalues

of Aq laggedone iteration andplacedon the RHSof the equation. This procedureis

shownin Figure(III.2). This requirestwo messagepassesper iteration for eachinterior

processor,which increasesrun time dramatically. Also, the convergencerate of the

boundaryAqvaluesis notuniformbetweensteps.

Block Cyclic Reduction Routine

To avoid the computation involved in the iterative ADI solver, a Block Cyclic

Reduction (BCR) routine was implemented to directly solve the tridiagonal matrix in the

sweep. The BCR method is described below.

In an ADI method, the original single pentadiagonal matrix is approximately

factored into two tridiagonal matrices. The sequential code used a Thomas algorithm to

directly solve each matrix.

In a Thomas algorithm, the tridiagonal matrix is exactly factored into the product of

a lower triangular matrix L and an upper triangular matrix U:

or: [M]{Aq} = {R}

or: [LIU;{Aq} = tR } (3.44)

Each entry in the tridiagonal matrix is itself a 4x4 matrix (2D) or a 5x5 matrix (3D).

For simplicity, only a scalar tridiagonal matrix is shown; the extension to a block matrix is

straightforward. In this way, Eq. (3.44) may be rewritten as:

40

blc I 0 0 0

a2b2c2 0 0

0 a3b3c 3 0

0 0 a4b4c 4

0 0 0 asb 5

[BIO 0 0 0][1 C1 0 0 0 1

/_2B_OoOilo 1c2oo/
-/o _,B,Oo//oo 1c_o/
/ oOA4B_O//oo OlCq
t oo O_BdLo o oo1j¢_._,

where:

Aj= aj

AjCj_ 1 + Bj = bj

B _Ci = cj (3.46)

Once the L and U matrices are known, then the tridiagonal matrix is solved in two

steps. Eq. (3.44) is rewritten as:

[LIU]{Aq} = {R }

= [L',{Aq*} (3.47)

and solved using:

Aq*j= (Rj- AjAq*j__)/_j
(3.48)

The second step is to solve:

41

[U_(Aq} = {Aq*} (3.49)

using:

Aqj= Aq*j-CjAqj+I (3.50)

It is seen that the Thomas algorithm is inherently sequential; i.e., for each step in

the inversion procedure, information is required from the step previously performed.

Therefore, the Thomas algorithm is not a directly parallelizable procedure.

The Block Cyclic Reduction procedure is a more parallel way of directly solving the

tridiagonal matrix. Given a tridiagonal matrix that is ((2n+l) x (2n+l)), the procedure

works as follows.

First, the matrix is reduced:

blC 1 0 0 0

a2b2c 2 0 0

0 a3b3c 3 0

0 0 a4b4c 4

0 0 0 asb 5

i I 0 C 10 0]

= 30 B30C 3

0AsOB

(3.51)

where:

42

(a_j-l) (cjaj+l)

gj= bj- bj.1 bj+l

I

Rj= rj- bl.1 bl+l
(3.52)

The reduction is continued, dropping every other line in each sweep, until only the

center line remains:

B_qj- Rj (3.53)

At this point, the known Aq values are backsubstituted to find the unknown Aq

values. The backsubstitution is performed in the reverse order as the reduction.

The BCR routine has three drawbacks. First, the processors must communicate

before every round of reduction and backsubstitution to obtain matrix values that are

outside of its computational domain. These messages are relatively short, however.

Second, during the end of the reduction and the beginning of the backsubstitution when

few lines are left to compute, there are processors idling. It is hoped that the savings in

computation time compared to the parallel iterative routine will make up for the idle time

encountered. Third, the BCR routine must have 2n+l lines to compute, which means that

the grid required for the routine is much less flexible than that for the iterative parallel code.

In order to meet this requirement, the number of i points in the grid was increased from 163

to 259.

43

It shouldbeemphasizedagain that the BCR routine is a direct solver. Once through

the BCR routine will return the correct answer to the tridiagonal matrix, unlike the iterative

ADI solver described above.

GMRES Implementation

The GMRES routine was implemented on the parallel ADI code on a trial basis after

the ADI code was validated. When GMRE, S was initially implemented, a question arose as

to the definition of the residual to be minimized.

Two ideas were tried. The first idea was a completely parallel GMRES

implementation, where each processor ran a GMRES routine to minimize the residual in its

particular domain. When a function evaluation is required, the processors work together as

before to compute a residual, but each processor is concerned only with the residual in its

portion of the domain. This is equivalent to allowing each direction to have a different

weighting coefficient in each processor's domain.

The second idea is a general GMRES implementation. In this scheme, the

processors work as before to compute the search directions and the residual in its domain;

but at the end of each function evaluation, the norm of the residual is globally computed

and used. This is now equivalent to enforcing a single weighting coefficient to be used on

each direction in the domain (i.e., as in the sequential version).

Due to time limitations, only steady flow applications were tested with the parallel

code. The codesupports time-accurate GMRES, however, and it is suggested that time-

accurate tests be made.

The GMRES was also implemented on the BCR code, but due to memory

limitations only 5 directions were used.

44

CHAPTER IV

2-D RESULTS

In 2-D, only the ADI code was used, since a satisfactory level of convergence

was always obtainable by employing enough GMRES directions.

Validation of GMRES Code

Two steady-state cases were run with GMRES to validate it against the original

ADI code. In all steady-state cases, a uniform time step was used for both GMRES and

ADI.

From this point on, the term 'GMRES (J)' will be" used to denote a J direction

GMRES procedure used on a steady state flow problem.

The first case was inviscid transonic flow (Mach number of 0.8) over a NACA

0012 airfoil at a 1.25 degree angle of attack. This problem was chosen to see the effects of

shocks on the GMRES solver. Figures 1 and 2 give the residual and lift cx_fficient history

comparisons between the original ADI solver and the GMRES (40) code. The GMRES

(40) solver requires only 50-55% of the CPU time necessary for the ADI code. Also, the

lift coefficient converges much more rapidly.

The interesting part of this problem was in choosing the number of GMRES

directions to use. A typical GMRES run would show the residual dropping rapidly at first,

and then convergence would slow and stall. It was hypothesized that the GMRES

procedure was getting caught in a local minima that it couldn't find a way out of. As more

45

directions were used in the GMRES procedure, the code converged to a lower level of

residual before stalling, adding validity to this argument. When less than 40 directions

were employed, the solution obtained would not match the result given by the original ADI

code. With 40 directions, the result matched the ADI solution. A run of 80 directions

showed that there was a limit to the speedup obtainable from using more directions; the

convergence rate dropped sharply. It is thought that the higher directions contain much

more noise than the early ones, and thus degrade the solution. Figure 3 shows a

comparison of the global residuals for various GMRES runs.

One case was run with GMRES to validate it in the Navier-Stokes mode. The

problem calculated was that of a NACA 0012 airfoil at a 5 degree angle of attack at M =

0.283 and a Reynolds number of 3,450,000.

Two GMRES runs were performed, with 10 and 40 directions used. Lift

coefficient and residual histories are given in Figures 4 and 5, and the pressure distribution

is compared to the ADI result in Figure 6. Excellent agreement is shown between the

solvers.

The stalling phenomenon is seen again in Figure 5, but this time the level of

residual obtained by the GMRES (10) solver was adequate for the problem.

Unsteady Flow Analyses

Once the code was validated, two test 2-D unsteady calculations were performed

using the GMRF_,S solver to determine if significant savings in CPU time may be obtained

compared to the original ADI scheme.

It should be remembered that the approximate factorization used in deriving the

original noniterative ADI code causes a factorization error to appear due to the splitting of

the left hand side of the equations from one block pentadiagonal matrix to two tridiagonal

46

matrices. This error is proportional to the time step size. Therefore, to achieve time

accuracy, the time step must be small enough to keep the factorization error negligible.

This limitation on the time step may be removed by performing a Newton iteration

at each new time level in order to drive the factorization error to zero at each time step.

Since each Newton iteration is equivalent to one ADI time step, the computation time is

reduced if the time step multiplier T is greater than the number of iterations N required for

an accurate solution at the new time level. This is illustrated in Figure (IV. 1).

n n+l n+2 n+3 n+4 n+5

Figure (IV. 1):

T=5

Illustration of Newton Time Stepping

Note that the Newton iteration procedure is equivalent to a one direction GMRES

step that is restarted N times.

The time step limitation may also be circumvented by using the correction vector

from the Newton iterative solver as the function to be minimized by the GMRES solver.

Since a J direction GMRE3 iteration requires J calls to the function evaluator (each of

which is equivalent to an ADI time step), the computation time may be reduced in a similar

manner to the Newton iterative procedure. This is illustrated in Figure (IV.2).

47

D=3

n n+l n+2 n+3 n+4 n+5

Figure (IV.2):

T=5
Illustration of GMRES Time Stepping.

From this point on, the term 'GMRES (J/T)' will be used to denote a J direction

GMRES procedure being performed at each time step of an unsteady calculation; the time

step employed will be T times larger than the noniterative ADI time step.

The first test case evaluates the solver's ability to handle unsteady transonic flow.

A plunging NACA 64A010 airfoil at a Mach number (M,) of 0.8 and a reduced frequency

(based on half chord) of 0.2 is solved in the Euler mode. The plunging motion is defined

by the equation

Yx =-M_sin (l°)sin (tot)
(4.1)

At first, a time step of 20 times the ADI time step was employed {GMRES

(x/20)}, but it became apparent that this was too large to resolve the shock motion

properly. A time step factor of 5 was found to be small enough to adequately resolve the

physics of the problem, but the GMRES was not stable using less than 10 directions,

which resulted in over a 100% increase in computer time. This illustrates the tradeoff

48

betweenhaving thelargetime step necessary for effective speedup with GMRE.,S and the

small enough time step to accurately model the physics of the problem.

The lift and pitching moment histories are plotted as a function of phase angle,

tot, and are compared with the Euler calculations by Steger [Ref. 20] in Figures 7 and 8.

Another case which was tested is a Navier-Stokes calculation for a NACA 0012

airfoil in the deep dynamic stall condition. The Mach number is 0.283, the Reynolds

number is 3.45 million, and the reduced frequency is 0.151. The airfoil motion is defined

by

a = 15 °- lO°cos (cot). (4.2)

A time step factor of 20 was tried initially. To get a comparison with the original

ADI code, 20 directions were run (GMRES (20/20)}. Note that this takes much longer

than the original ADI code to run, due to the GMRES overhead. Figures 9, 10, and 11

compare the GMRES results with experimental results by McAlister et al (Ref. 21). While

the GMRES (20/20) code does not get quantitatively good results, the result follows the

experiments qualitatively. Thus, the GMRES (20/20) run was chosen as a benchmark to

compare later runs to. Figure 12 gives the residual history of the GMRES (20/20) run.

The next series of runs were performed to see what sort of speedups were likely

from GMRES. For this set, a time step of 20 times the ADI time step was used (i.e.,

GMRF___ (x/20)). The number of directions were set at 10 and 5. Results for lift, moment,

and residual are shown in Figures 13, 14, and 15. These are plotted against time as it is

easier to judge results in this way. The output shows that GMRES (10/20) is very nearly

as good as (20/20), while accuracy begins to fall off in the (5/20) run. Timings for these

runs are given in Table (IV. 1).

49

CPU seconds required
for 1 cycle of pitch

% of ADI time

ADI 3958 100.0

GMRES (20/20) 5679 143.5

GMRES (5/20) 1971 49.8

3079

GMRF_,S (x/20) timings

OMRES (10/20)

Table (IV.1)

77.8

The next series of runs were done to see the effect of the time step on the GMRES

solver. From the results of the last series, GMRES (x/2x) was chosen (number of

directions equal to half of the time step factor). These results are shown in Figures 16, 17,

18, 19, 20, and 21. The results were split into two groups to keep the graphs legible.

From these graphs, it can be seen that there is a tradeoff between accuracy of the GMRES

iteration (which goes up with number of directions) and the time step necessary to resolve

flow phenomena. From this series of runs, it appears that a time factor of 20 is the best

choice in this case. Timings for these runs are given in Table (IV.2), though timings were

not available for the GMRES (20/40) case. It is seen from this table how the GMRES

overhead increases dramatically with the number of directions used.

CPU seconds required

for 1 cycle of pitch

% ofADl time

ADI 3958 100.0

GMRES (5/10) 3087 78.0

GMRES (10/20) 3079 77.8

GMRES (40/80) 3957 100.0

Table (IV.2) GMRES (x/2x) timings

50

Another experiment was tried to reduce the amount of memory required for the

GMRES calculation. In this run, the GMRES iteration was carried out more than once per

time step with less directions (e.g., two 5 direction iterations instead of one 10 direction

iteration per time step). This is effectively doing a Newton iteration on top of the OMRE_

iteration. The advantage was that the memory necessary for the GMRES iteration was cut

in half. The possible disadvantage was that the second set of GMRES directions were not

necessarily orthogonal to the first set.

It was found that the 'restart' method worked better than the single step method

for this case. The residual had much less 'noise' than before, and was lower. It was

hypothesized that the restart method allows the GMRES solver to recover from a bad initial

guess for the flow field at the new time level. Since the contribution of the higher

directions are small compared to the initial directions, it is not too surprising that the

residuals would be comparable. Figure 22 compares the residual histories of the two runs,

while Fig. 23 shows the lift coefficient histories.

It was noticed that the number of directions needed for a given level of

convergence was less in the portion of the cycle where the flow is attached. To take

advantage of this, a switching mechanism based on residual was implemented in the restart

solver. In this variant, the second GMRES iteration is not performed if the residual is

below a user-specified tolerance. This resulted in a 30% speedup over the original restart

code when a tolerance of 5 x 10 -7 was input. Results of this run are given in Figures 24

and 25.

Timings for this series of runs are given in Table (IV.3).

51

CPU seconds required
for 1 cycle of pitch

% of ADI time

ADI 3958 100.0

GMRES (10/20) 3079 77.8

GMRES (5:5/20) 3110 78.6

2644GMRF_ (Sd3W20) 66.8

Table (IV.3) Restart GMRES timings

Multigrid Analysis

At this point, a multigrid solver was introduced to try to reduce the number of

GMRES directions necessary for convergence (and thus reduce the total memory required).

In each iteration, the variables are transferred to a coarse grid and a GMRES iteration is

performed there. It was hoped that this coarse grid calculation would aid in minimizing the

low frequency error components, while the fine grid iterations reduced the high frequency

error components. The multigrid solver used three 5 direction GMRES iterations per time

step in a F-C-F pattern. In order to compare these with prior results, it was decided to use

the same number of fine grid directions per iteration.

To validate the multigrid solver, the same steady runs were performed. The

multigrid solver gave impressive speedups as compared to the fine-grid-only GMRES

results. One noticeable difference was that the transonic steady case only took 5 directions

to converge (down from 40 with only the fine grid). Residual histories for the steady runs

are given in Fig. 26 and 27.

The multigrid solver was then run in unsteady mode on the dynamic stall test

case. In Figures 28, 29, and 30, a (20/20) run is compared to a fine-grid-only (5:5/20) run

52

(two5 directioniterationspertimestep)anda F-C-F (5:5/20) run (a 5 direction evaluation

on the fine grid, then the coarse grid, then on the fine grid again). In effect, this is testing

the effectiveness of the coarse grid evaluation. No appreciable gain due to multigrid was

apparent except when the flow is attached and the flowfield is relatively smooth.

Table (IV.4) gives the timings for these runs.

CPU seconds required

for 1 c_¢cle of pitch

% of ADI time

ADI 3958 100.0

GMRES (5:5/20) 3110 78. 6

GMRES (5fcf/20) 3561 90.0

Parallel Steady Flow Analyses

First, the ADI code was implemented on a 32 processor Intel iPSC/860 MIMD

parallel computer. Test runs for steady flow only were performed with from 4 to 32

processors.

Even though these runs were for steady flow cases, pseudo time-accuracy was a

goal (i.e., the same answer being achieved on each iteration regardless of the number of

processors employed). In order to accomplish this, the maximum change in Aq on the

boundaries was computed, and _-sweep iterations were performed until the maximum

change in Aq was less than 1% of its absolute value. This criteria proved to be adequate

for a time-accurate computation; usually between 12 and 25 iterations were necessary for

convergence, with the number of iterations increasing with the number of processors used.

Using the values for Aq* on the boundaries as the first guess for Aq proved to be the best

53

initial guesstested,andconvergence was adequate, but an improved iteration procedure

would speed the solver dramatically.

The problem chosen was the Navier-Stokes test problem; that of a NACA 0012

airfoil at a 5 degree angle of attack, with a freestream Mach number of 0.283 and Reynolds

number of 3,450,000.

Figure 31 shows the residual histories of these runs for 4, 8, 16, and 32

processors. The speedup obtainable with larger numbers of processors can be seen, but it

is also noted that the speedup factor is not ideal, as shown in Figure 32. The timings are

given in Table (IV.b).

Figure 33 shows the moment coefficient histories as a function of the number of

iterations required, and the pseudo time-accuracy of this code is illustrated; all results fall

identically on the same line.

Number of

Processors

CPU time

required for

1000 iterations

CPU time for

ideal speedup

CPU time

required/ideal

CPU time

4 6037 6037 1.0

8 3230 3018.5 1.070

16 1985 1509.25 1.315

32 1463 754.625 1.939

Table (IV.b): Parallel Iterative ADI Timings for 1000 Iterations

At this point, the GMRES scheme was added. Since time was not available to

develop the parallel GMRES routine, these results are extremely preliminary.

54

Figure 34 shows the residual history of the 10 direction GMRES runs with 8

processors. In this figure, 'Spl0d/s' denotes the version with separate residuals for each

processor, while _8pl0d/g' represents the version with a global residual solver. The runs

are compared to those of the standard ADI with 8 and 32 processors. Note that the 8

processor global GMRES solver is actually faster than the 32 processor standard code,

while the separate GMRES code is slower than the 4 processor standard code. It is

hypothesized that this is occurring because the separate GMRES code causes the

processors to straggle against each other while trying to minimize the residual in their

respective domains.

The next figures show the effect of the Block Cyclic Reduction tridiagonal matrix

solver on the parallel code. The BCR routine required 2n+1 computational points to run;

therefore the number of i points was increased from 163 to 259 (since the i=1 and i=imax

points are not computed by the tridiagonal solver).

The intial runs of the BCR algorithm were performed on the same case as the

iterative code. Figure 35 shows the residual histories of these runs for 4, 8, 16, and 32

processors. The speedup obtainable with larger numbers of processors can be seen, but it

is also noted that the speedup factor is not ideal, as shown in Figure 36. The timings are

given in Table (IV.6).

Since the BCR routine is a direct solve, the answers are not compared because they

axe identical.

It is seen that the BCR routine is much faster than the iterative scheme, but the BCR

routine does not scale as well with the number of processors used. This is because the

number of messages increases with the number of processors; also, the number of idle

processors increases.

55

Numberof

processors

CPUtime/1000

iterations

Ideal CPU time CPU time

required/ideal

CPU time

4 3460 3460 1.0

8 2068 1730 1.195

16 1396

32 1096

865 1.613

432.5 2.534

Table (IV.6): BCR ADI Timings for 1000 Iterations

The global GMRES code was also implemented on the BCR code, though memory

limitations of the Intel iPSC/860 prevented more than 5 directions being used. It is seen

that the code is converging even with such a low number of directions, but the convergence

rate is understandably lower than if more directions were employed. Figure 37 compares

the GMRES residual with that of the BCR code.

56

CHAPTER V

3-D RESULTS

In 3-D, both the ADI code and a new LU-SGS code was used, since a

satisfactory level of convergence was not always obtainable by employing more GMRES

directions.

Validation of GMRES Code

One steady-state case was run with GMRES to validate it against the original ADI

code. It was felt that a single validation case was adequate.

The steady-state 3-D validation case was that of an 1=-5 wing at a zero degree angle

of attack. The freestream Mach number was 0.9, with a Reynolds number of 11,000,000.

The Baldwin-Lomax turbulence model was used.

First, the original ADI code was run with eigenvalue-scaled local time stepping.

Then, a GMRF_ solver was implemented, using 20 directions.

The residual definition for the 3-D code was not immediately apparent, since the

underlying ADI code is a hybrid formulation that sweeps in the spanwise direction.

Usually, the original code is set to sweep from root to tip in one step; in the next step, the

sweep is from tip to root.

The initial GMRES implementation had one sweep per function evaluation, with the

sweep direction being changed between GMRES steps. This caused problems because the

57

problem to be minimized by the GMRF__ solver changed every step, and the GMRES

solver oscillated from step to step.

Then a two-sweep function evaluation was tried. In this method, the GMRES

residual is defined as the result of a root-to-tip sweep and a tip-to-root sweep (two ADI

steps). This definition worked well, and was used for all steady-state problems.

Then, convergence problems with GMRES in 3-D were encountered. When

coupled with the hybrid ADI solver, the GMRES (20) solver would converge for a short

time, and then stall. The residual obtained was too high for a useful solution; in fact,

spurious shocks were in the flow field.

Some directions given by the ADI solver were plotted, and they contained

considerable high-frequency noise. It appeared that the higher directions contained only

noise, and the weighting coefficients for these directions were very small.

Both the ADI and GMRE_ solvers have been applied to the three cases discussed

below. A 121 x 19 x 41 grid was used for all viscous calculations, and a 121 x 19 x 21

grid was used for the inviscid case. All timings and memory requirements given are from

the NASA-Langley Cray Y/MP using a single processor. All of the residuals shown are

computed using the L2 norm. All of the experimental results cited are from Tijdeman, et.

al. (Ref. 20).

Steady Transonic Flow about an F-$ Win2

To validate the 3-D GMRF_ code, steady transonic flow about an F-5 wing at

freestream Mach number of 0.9, Re = 11 x 106, and a = 0.0 ° was solved. The F-5 wing

geometry contains large sweep, high taper, and drooped, sharp leading edges, and is a

standard configuration recommended by AGARD for code validation. Initially, the

noniterative ADI solver was run to get a baseline solution and estimates of CPU time.

58

Next, theGMRF_._routinewasapplied to the noniterative ADI solver, defining the

function to be minimized as:

qn+l_ qn= M(qn) = 0 (5.1)

Initially, the same input settings (i.e., time step, dissipation coefficients, etc.) used

by the noniterative ADI solver were employed in the iterative ADI function evaluator. This

version was run with various numbers of GMRES directions. It quickly became apparent

that the higher GMRES directions contained little useful information due to high-frequency

noise, and this stalled the convergence before an adequate answer was obtained. In order

to damp out the high-frequency noise, the implicit dissipation coefficients were increased in

the ADI preconditioner, and a competitive convergence rate was achieved with the GMRES

solver using 20 directions (referred to hereafter as GMRES (20)). The GMRES (20)

solver had a slow initial convergence rate, but its asymptotic convergence rate at later

iterations was comparable to the ADI scheme.

The ADI code required 2.77 megawords (roW) of memory to run, while the

GMRF_,S (20) code required 14.55 mW- a fivefold increase which is required for storing

the 20 directions. Fig. 38 compares the I-,2norm of the residuals of the original ADI solver

with the GMRES (20) results for various implicit dissipation ('ID' on the graph)

coefficients. Fig. 39 shows the lift coefficient histories of these runs, and Fig. 40

compares the pressure coefficients at the 18.1% spanwise station given by the 20 direction

GMR.ES solver with that of the original ADI solver and experiment

From these calculations, it was concluded that the GMRF__,S solver will give results

identical to the ADI solver for steady state application. Since the goal of the present study

59

wasto reducetheCPU time necessary for unsteady applications, this case was not pursued

further to see if additional speedups using GMRES were possible.

LU-SOS Solver Applied to 3-D Steady Flows

At this point, the LU-SGS 3-D solver was applied to this steady flow problem. It

should be noted that this implementation of the LU solver is far from optimal; a fully

vectorized version would have required a total rewrite of the RHS (residual) calculation

subroutines, which would have greatly increased the debugging time necessary. Instead,

the LU solver was implemented only as a LHS replacement for the ADI solver, and

evaluated as a preconditioner for the GMRES routine.

An initial run of the LU solver caused some concern because the L2 norm of the

residual did not drop monotonically as did the residual from the ADI solver. Instead, the

residual would oscillate while generally decreasing. It was felt that this could cause

problems such as the "stalling" phenomenon noticed with the ADI.

Due to time constraints, only the steady inviscid F5 wing case was run. In this

case, the grid is identical, except that 21 normal points were used instead of 41. In order to

minimize the stalling, the LU solver was run alone for 250 iterations from a cold start, and

this solution was used to start the GMRES steady solver.

In Figure 41, the/-.2 norm computed by the original LU solver is compared to that

of the GMRES (20) and GMRES (5) schemes. All of these runs use a [3 parameter of 1.0

and an explicit dissipation parameter of 0.01. It is seen that the 5 direction solver stalls

within 4 steps, and the residual is never reduced after that. The 20 direction solver

however, does succeed in reducing the residual slightly faster than the original LU solver.

To determine if more speedup is possible with the GMRES solver, the [3 parameter

was varied between 0.65 and 1.0. It was seen that a higher value generally retarded the

convergence, and a lower value increased the convergence rate. It was found that even

6O

though the original code was unstable with fl = 0.65, the GMRES procedure stabilized the

code; however, the convergence rate was reduced with this low value of _. It was found

that a [_ value around 0.70 gave the best GMRES convergence rate, and this is illustrated in

Figure 42.

For unsteady flow problems, an earlier version of the LU solver was evaluated and

found to show no advantages over the existing 3-D ADI code. Therefore, research on the

LU solver for unsteady flows was not pursued.

Unsteady Viscous Flow about an F-5 Wint, with an Oseillating Flap

The second case investigated is the unsteady flow over an F-5 wing with a

harmonically oscillating trailing edge control surface, hinged at 7tic = 0.82. The trailing

edge oscillates at a frequency of 20 Hz, the M® = 0.90, Re = 11.0 x 106, a,_g = 0.0 °, and

an,p = :L-0.5°.

The unsteady pressure coefficients from the ADI calculation compared with the

experimental data for this case are shown in Fig. 43 and 44. In the comparison, the real

and imaginary components of the pressure coefficients are defined as:

(qo,-,-(qo,.o

2 2

(Cl_real= 2act
(5.2)

The data presented in Fig. 43 and 44 are for the initial 3/4 cycle of oscillation, at the

18.1% span station. Our studies with the noniterative ADI solver indicate that even better

61

correlationwith the experimental data can be achieved if the solution is allowed to march

more than one cycle or until no discrepancies are found between successive cycles of

oscillation.

The preconditioner for the GMRES calculation was the iterative ADI solver

described in Chapter 3. Within each time level, local time steps are used for the sub-

iterations. That is, Eq. (3.6) is replaced by:

where Ati,i. k is the local time step, which is a function of the grid and local flow conditions.

For initial comparisons, a five direction GMRES run was made at five times the

ADI time step (GMRES (5/5), where the first number designates the number of directions,

and the second number is the time step factor), and the GMRES solution followed the ADI

solution exactly.

After the initial validation, the GMRES time step factor was increased to

numerically determined the largest time step that can be used without large loss of accuracy

due to temporal discretization errors. To carry out this task, GMP, ES (5/10) and (5/20)

runs were performed. Both the (5/10) and (5/20) runs gave good results while providing

significant speedups, but the (5/20) results showed some degradation in solution accuracy.

The CPU time and memory required for the ADI and three GMRF_ runs are shown in

Table (V. 1).

" 62

ADI

GMRES(5/10)

GMRES(5/20)

Memory(mW)

3.66

7.72

7.72

CPU time (sec)

5533

3952

2002

CPU (% of ADD

I00

71

36

Table (V. 1): Unsteady Transonic Viscous Flow Computer Requirements

Time histories of the mid half-span moment coefficient for two GMRES runs are

compared in Fig. 45. It is seen that the results are identical to that of the ADI solver.

Figure 46 shows the residual histories of the GMRES runs, and Figures 47 and 48

compare the real and imaginary components of the pressure coefficients with both

experiment and the ADI solver.

It should be remembered that the imaginary component of the pressure coefficient is

measured at the times when the flap is moving the fastest. Therefore, the imaginary

component of the pressure coefficient is the best measure of the time accuracy of the code.

Conversely, the real component of the pressure coefficient is measured when the flap is

moving the slowest, and is a much looser measure of time accuracy.

Unstead7 Flow about an F-5 Wing in Modal Vibration

The third case investigated is the unsteady inviscid flow about an F-5 wing

undergoing modal vibration. In this case, M0o = 0.90, a,_g = 0.00, aoscillation = 4"0.5 °, with

an oscillation frequency of 40Hz (reduced frequency of 0.275). The amplitude of the wing

surface deformation is defined by:

63

w(x,y) = -0.329 + 0.977x - 0.088y + 0.244xy

- 0.077y 2- O.091xy 2 (5.4)

Eq. (5.4) gives a pure angular displacement with the nondimensionalization

performed such that the tangent of the angle of oscillation at experimental span station 2 is

equal to one. The pressure coefficient may be separated into real and imaginary

components by using Eq. (5.2).

The results of the original ADI code are compared to experiment in Figures 49 and

50. The ADI code required 1.5 mW of memory to run, and took 698 CPU seconds to

complete 3/4 of a cycle of oscillation.

Since this simulation requires very little CPU time, it was used to more thoroughly

determine the effects of both the time step and the error at each step on the solution

accuracy.

Again, GMRES (5/5) was used as an initial run, and the results were identical to the

original ADI code. To limit the GMRES memory requirements, only 5 directions were

employed. The 5 direction GMRES code required 4. I mW of memory to run (2.73 times

larger than the original ADI code).

Effects of Time Step on Solution with Five Directions

At this point, the time step was increased to determine the maximum time steps

possible with 5 GMRES directions. Time steps that were 10, 20, and 40 times larger than

those used by the ADI scheme were tried. Since shock speed is sensitive to time step size,

and critically affects pitching moment, the mid-half span moment coefficient histories were

used to study the effects on solution accuracy, as shown in Fig. 51. The residual histories

of the GMRES runs are shown in Fig. 52. The real and imaginary components of the

64

pressure coefficient at the 18.1% spanwise station are shown in Fig. 53, 54, 55, and 56.

These graphs are split for legibility.

These figures show that the solution begins to degrade slightly at 20 times the ADI

time step, and the moment coefficient, influenced by shock speed, is very different at 40

times the time step. To put this into perspective, the nondimensionalized ADI time step is

Ax_ (aAt)_ 0.1

c (5.5)

One complete cycle of harmonic oscillation requires 1270 time steps, which is

0.283 degrees of harmonic oscillation per time step. In this manner, it is seen that a

GMRES (5/40) computation takes only 32 time steps per cycle, which is 11.33 degrees of

harmonic oscillation per step. With such a large time step, an error in shock speed is not

entirely unexpected.

ADI

GMRES

(5/10)

GMRES

(5/20)

GIVIRES

(5/40)

Memo_

(mW)

1.4

4.1

4.1

4.1

CPU time

(sec)

698

513

265

131

CPU

(% of ADI)

I00

74

38

19

Table (V.2): Unsteady Inviscid Transonic Flow Computer Requirements

65

The CPUtimeandmemoryrequiredfor theADI andthreeGMRESrunsareshown

in Table(V.2).

Effect of Residual Ma2nltude on Solution Accuracy (Time Step Fixed)

The next area of investigation is to determine if a larger time step may be employed

if the error is reduced more at each time step. Using the GMRES solver, there are two

ways to accomplish this: either use more directions in each iteration, or perform more than

one GMRES iteration at each time step ('restart' GMRES). Restart GMRES is discussed

in detail in Chapter 3.

ADI

(5/4O)-]

GMRES (5/40) -2

,GMRF_ (5/40)-3

GMRF_.S(5/40)-4

Memory (mgO

1.4

4.1

4.1

4.1

4.1

CPU time (sec)

698

131

262

39O

525

CPU (% of ADI)

100

19

38

56

75

Table (V.3): CPU time and memory Usage for ADI and GMRES Calculations
i

for Flow about an 1=5 Wing in Modal Vibration

Restart GMRES was chosen in order to keep the memory requirements constant.

The restart code was employed on the GMRES (5/40) run, and up to four .5--direction

GMRES iterations were used per time step (GMRES (5/40) - 1, (5/40) - 2, etc.). As more

iterations were used, and the error residual decreased, the answer approached the ADI

solution, but smeared out the pressure peaks. Figures 57 and 58 compare the imaginary

66

componentsof thepressurecoefficientscomputedbytherestartGMRES(5/40) - x codeat

the 18.1%spanstation. Figure59 showstheresidualhistoriesof the GMRES(5/40) - x

runs.

The CPU time and memory required for the ADI and three GMRES runs are shown

in Table (V.3).

Effect of Time Step on Solution Accuracy (Magnitude Fixed)

The next part of this investigation was to compare various GMRF__ runs which use

different time steps but result in the same error magnitude. This would isolate the effect of

the time step on the unsteady solution. To illustrate the results, a GMRES (5/20) - 2 run is

compared to a GMRES (5/40) - 4 code that achieved almost identical error residuals. Fig.

60 shows the imaginary component of the pressure coefficient at the 18.1% span station. It

is shown that even at this very large time step, the GMRES code still resolves the shock

location well, hut the shock is somewhat smeared as the time step is increased.

The CPU time and memory required for the ADI and GMRES runs are shown in

Table (V.4).

ADI

GMRES (5/20) -2

GMRES (5/4o).4

Memory (mW)

1.4

CPU time (see)

698

CPU (% of ADI)

IO0

4.1 536 77

4.1 525 75

Table (V.4): CPU time and memory usage for ADI and GMRES calculations for

flow about an 1::5 wing in modal vibration

67

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The GMRES algorithm was implemented on unsteady compressible viscous flow

solvers in both two and three dimensions, and reduced the CPU time necessary for these

computations by nearly 60% in most cases. The drawback to the GMRES procedure is the

increased storage required by the search directions.

It was shown that a Newton/ADI procedure was an effective preconditioner for

GMRES, but a simpler preconditioner such as an LU-SGS scheme may prove to be more

efficient. A 3-D LU-SGS solver was implemented, but was not vectorized to take full

advantage of the LU-SGS algorithm. With a fully vectorized code, however, the LU-SGS

scheme may well be competitive.

In the 2-D code, restart GMRES was investigated, and found to be an effective way

to cut the memory requirements of the GMRES method while not requiring much more

CPU time. Also, multigrid methods were implemented, and while they greatly improved

steady-state convergence, in unsteady applications it was found that the greater accuracy

did not warrant the extra CPU time required.

The restart GMRES also was effective in 3-D, and the memory requirements were

only about twice that of the original ADI code. The CPU time required by the GMRES 3-D

code was as low as 36% of that of the ADI code, while still retaining good accuracy.

A parallel version of GMRES was implemented on the NASA-Langley Intel

iPSC/860, and preliminary results were obtained. The global GMRES did very well, but

68

the separate GMRES did not do well at all. It was also found that a Block Cyclic

Reduction routine sped up the function evaluation procedure, but that the memory required

by the BCR routine reduced the number of GMRES directions that could be used.

In the future, the GMRES research on sequential computers should concentrate on

testing various preconditioners to establish the most effective ones. The GMRF_._ research

on parallel computers should not only investigate alternate preconditioners that are more

parallelizable, but also investigate more efficient ways of inverting the tridiagonal matrices

encountered in AD! solution procedures.

Finally, after more 2-D experience is gained and a machine with more memory is

available, the parallel code should be rewritten in 3-D. With this version of the code,

extension to 3-D is straightforward.

69

APPENDIX A

TRANSFORMATION TO CURVILINEAR COORDINATES

This appendix details the transformation of the governing equations from

Cartesian to generalized curvilinear coordinates. For simplicity and to save space, only the

2-D equations are considered; extension to 3-D is straightforward.

The Navier-Stokes equations written in Cartesian coordinates are:

O_l+axE+ azG=_e OxR+ OzT)
(A.I)

The transformed coordinates are:

_ = _(x,z,t)

"¢=t (A.2)

From the chain rule:

(A.3)

7O

Applying Eq.(A.3) tothegoverningequationsgives:

(A.4)

At this point, it is noticed that the numerical evaluation of the transformed

derivatives (x x , x_ ,x_, etc.) will have the same problems with computational accuracy

that the original equations did (i.e., they must be computed on a stretched, non-Cartesian

grid). To avoid this problem, the derivatives of the transformation variables (which are

evaluated in the physical plane) are rewritten in terms of the derivatives of the Cartesian

grid variables (which are evaluated in the computational plane, and thus are more accurate).

This transformation is performed as follows:

Eq. (A.3) is written in matrix form as:

ox --- 0 _x;x[0_
o 0_z;z.] at . (A.5)

Or, by using the chain rule to find the curvilinear derivatives in terms of the

Cartesian derivatives, one obtains:

71

++= o_/_+ q
+_ °z_zqka4. (A.6)

Solving Eq. (A.6) for the Cartesian derivatives gives:

(+10x

O

=j 0 _ -_+i_+q
o " -_ _+ j_+d

(A.7)

where J is the Jacobian of transformation and is defined:

1
J=

x_z_- z_x_ (A.8)

From comparing Eq. (A.5) and (A.7), the following definitions are found:

_= Jzl:

z = -jx

_t = -X_x" Z_]_s

= -Jy

z= jx

(A.9)

72

At this point, it should be noted that Eq. (A.4), which is the transformed

governing equation, is not written in conservation form (there are non-constant terms

outside the flux and viscous derivatives). In order to express the transformed governing

equation in conservation form, the following derivation is performed:

First, Eq. (A.4) is multiplied by the reciprocal of the Jacobian (I/I). Then the

chain rule is applied to the resulting terms. For example, the second term term becomes:

(A. 10)

After the chain rule is applied, Eq. (A.4) becomes:

1
"-'m

Re_

ol, +oil)+
+

+ol)
(A.11)

where

73

(A. 12)

These expressions for M l, M 2, and M3 are equal to zero. This is shown by

using Eq. (A.9) to rewrite Eq. (A. 12) as:

M_--o_(_)+o_(-,o=_r,_-- o

(A. 13)

Thus, these terms are dropped. Rewriting Eq. (A.11) without these terms, one

obtains:

74

(A.14)

These terms may be regrouped to give

O_q+ O_E + O_G=-_e O_R + O_T)
(A.15)

whcrc:

P

pu

pw

e

;E=

1

R= T

pu

puU + _v

pwU + _zP

U(e+p)- _ip

0

_xR4+ _szT4

1

;G-- T

1

;T= T

0

x+ _Z_z

x+ _x_

pw 1

puW + _v

pwW + r=_p

w

(A.17)

with the contravariant velocities U and V given as:

75

(A. 18)

The transformed viscous terms are:

R4=UXxx+ wx_ + prry_l)(_l_a2+ _ 2)

T'=ux +WXzz+_ Pr _,-1) (_,a2+ _el
(A. 19)

76

APPENDIX B

DISCRETIZATION IN TIME AND SPACE

The 2-D Reynolds averaged Navier-Stokes equations written in curvilinear form

ale given as-

(B.1)

This equation is discretized by using the Euler implicit scheme, which is first

order accurate in time and second order accurate in space. The time derivative is

approximated by a first order forward difference. Using Taylor series expansion:

qn _qn + C(A.t2) = (qn+l'k+l-.q n) + O(A.t 2)
Az

= (Cln+l,k+l _ qn+U. qn + qn+_)

A's

hqn+l,k (qn+U_ qn)

A't A't (B.2)

where O(Ax 2) indicates that this expression is first order accurate in time (second order

terms are truncated). In this expression, Aqn+l, k is the change in the flow properties

between the 'k' and 'k+l' iteration levels, and 'n' is the old time level (at which the flow

properties are known), while 'n+l' is the new time level where the iteration is taking place.

77

Using Eq.(A.2), the unknown time level 'n+l' can be computed using the flow properties

at the known 'n' time level.

The spatial derivative terms are approximated with second order accurate central

difference operators. For example,

E_- / ':t_

2Ag (B .3)

In the computational plane, At is taken as one and ij is a grid node point.

With this discretization method, the computational stencil for the convective terms

E and G depend only on the values of the variables at the grid points adjacent to the node

being computed. In order to have the same stencil with the viscous terms R and T, the half

points between the nodes are used.

The viscous terms (5_R and b_T) in the governing equations all have the form

5lg(c,6lgu), where c consists of the metrics of transformation and the viscosity. These terms

are discretized using the values of the derivatives at the half points surrounding the node

being computed:

A_

= [_" at , A_ J

A_

78

2 A_ 2 A_

__ o_u_-o_-__,_u_,-u4
2A_ (B.4)

This discretization gives a compact three point stencil. As before, the grid

spacing on the computational plane is taken to be unity.

Substituting into Eq. (B. 1), the discretized equation becomes:

(B.5)

Similarly, the 3-D equation becomes:

b.cqn + A,t(_En+l + t =.n+l =orlr + 5_;G n+l)

3

g +0nS +
(B.6)

79

APPENDIX C

LINEARIZATION OF THE DISCRETIZED EQUATIONS

The discretized equation from before is:

_)xqn+ Ax(bgEn+l+ b;Gn+t = A---_b Rn+l+g b;T n+l)

(c.i)

Given the flow variables at the 'n' time level, equation set (C. 1) can now be

solved to obtain the flow variables at the 'n+l' time level. Unfortunately, this set of

algebraic equations are coupled and highly nonlinear, making them very difficult to solve.

To make these equations easier to solve, the convection terms E and G are linearized about

time level 'n+l' and iteration level 'k' by means of Taylor series:

En+l,k+l= En+l,k+ qn+l,k+ O{Ax2)

= En+l,k+ An+l,kAqn+l,k + O(Ax 2)

' rl-l-ltk

 0ql

= Gn+l,k n+l,k _Ax_+ cn+l'kAq +

(c.2)

(C.3)

80

where A and C are the Jacobian matrices of the flux vectors E and G. These matrices are

defined:

0E _ 0E + 0G

.- _- _ +_% _ZTq
C-- 0....GG= _t I + _ 0E + _ OG0q _gq % (c.4)

OE 0G

where I is the 4x4 identity matrix; _ and aq are the flux Jacobian matrices of E and (3 with

respect to q. After evaluating these and substituting into Eq. (C.4), A and C become:

kt kx k z 0

kx_ 2- u0 kt+ 0 - k_,2u kzu - kx¥1w k_l

AorC=

kz_2-w0 kxw-k_,lu kt+ 0-kz_'2w kz_'1

"O (bl-* 1 kxbl- ¥1u0 k_l'71 v0 kt + '/0
(c.5)

where

2

¢=

b, =_-)-¢:

y1=¥-1

72=7-2

0, - 1_(u2+ w 2)

2

81

0 =kxu + kzw

(c.6)

Since these expansions are also first order accurate in time, this linearization will

not affect the time accuracy of the solution.

The viscous terms are lagged to the 'k' iteration level, as their magnitude is small

at high Reynolds numbers.

When Eqs. (C.2) and (C.3) are substituted into (C. 1), the linearized equations are

written as:

/ n+_ n.)

+ R--_ _ + _T"+
(C.7)

This equation set is first order accurate in time and second order accurate in space.

In 3-D, the derivation is similar. Since 3-D ADI is at best neutrally stable, an

explicit sweeping procedure is performed in the spanwise direction (rl), using updated flow

variables as they become available. This allows a 2D ADI problem to be solved at each

spanwise plane. Thus, Eq. (C.7) becomes:

82

q

AT _ Ax

Ax

+g'/

(i+ --
-A_E + b:G°*_)

n+l,k n+l,k _)t;T n+l,k}b_R + t)nS +
(c.8)

where the superscript (n,n+l) is used to represent the explicit spanwise sweep.

In 3-D, the definitions of A and C change:

A=O=.=EE=Igtl _ OE+_ OF+_OG

. OE+_OF+ OG

oq (C.9)

and A and C become:

A otC=

ks k= k_, kt 0

kt¢2.u0 kt+O.k#,2u k_-kff]vk_t "k/lw Ir_'fl

k#2-vO kxv-k)_p k,'_6-k_, kzv-k_flw k_t

2 k_'kt_tv kt+ 0" k_2w k_ 1
k_¢-w0 k_w-k/rV

b,-_*-_k_,-_# k,),cyVok_,,-T_,ek,+@
C.10)

where:

2

¢=

b_= _{_-p)- ¢2

yl=y-1

y2=Y-2

(,_,I°_+v +
2

O= k,v + kyv + k_w

=_forA)k _for C (C.II)

83

84

APPENDIX D

SOLUTION PROCEDURE FOR APPROXIMATE FACTORIZATION

The factored set of equations to be solved are:

{I+ AxSgAn+l"kt{I+" ° ..n+l,k_f. n+l,k_ Ax(RHSn+_k}
axo;t: _aq . I = (D.1)

where for 2-D:

n+l,k n
q -q

A_

RHS n+l'k} =

n+1,k

b_E + _I;G n+l'k) + R--_ebl_R n+!'k

(D.2)

Eq. (D. 1) is solved by performing two sweeps. First, a sweep in the _ direction:

{I + Ax_gAn+l'k}{A4] = Ax{RHS n+l'k} (D.3)

where {Aq*} is a temporary vector.

The next sweep is in the _ direction:

85

{I+ A_Cn+Lk}(Aqn+Lk} = (Aq'} (D.4)

These two sweeps each require the inversion of a txidiagonal block matrix, which

is computationally more efficient than the solution of the original pentadiagonal block

matrix.

In 3-D, the same procedure is used at each spanwise station, with the RHS

containing the explicit spanwise terms.

Since central differencing is used for the spatial derivatives, each block consists

of a 4x4 matrix in 2-D, and a 5x5 matrix in 3-D. Eqs. (D.3) and (D.4) are solved by the

block LU decomposition method.

86

APPENDIX E

ARTIFICIAL VISCOSITY

When a central differencing method is used to solve a non-linear PDE, numerical

errors cause small oscillations in the solution to appear. At a given time level, the

numerical solution may be written as:

qnnanerical- qnexact + E esin (cox) (E.1)

As this numerical solution is used to compute the flow field at successive time

levels, the error in the solution in turn causes new errors at higher frequencies (i.e., the

error at a frequency w will operate on itself, causing a new error component at a frequency

of 2w). These new errors in turn cause even higher frequency errors at the next time level,

and thus low frequency errors move up through the frequency band until the highest

frequency that the grid can resolve is reached. At this point, the high frequency errors

manifest themselves as low frequency errors again, and the cycle repeats and grows until

the accuracy of the entire solution is destroyed.

An artificial viscosity model is implemented in order to damp out these numerical

oscillations in order to prevent these errors from growing. A blended second and fourth

order explicit dissipation is used, combined with an implicit second order dissipation term.

This method uses fourth order dissipation except in regions containing shocks, where the

second order dissipation terms become dominant.

87

This model is based on the numerical viscosity model proposed by Jameson,

Turkel, and Schmidt and modified by Swanson and Turkel (Ref. 19).

The governing equation with the artificial viscosity model added may be written

as follows:

(E.2)

where D is the dissipation terms, and the subscripts I and E refers to implicit and explicit

terms respectively. The coefficients eE and eI are used to scale the magnitude of the

dissipation terms. Usually, eE is chosen to be 1.0 and e I is 2.0.

The implicit dissipation terms are written:

(E.3)

where:

2
IuI+ 2x+gz

2
(2-D)

88

2 2

2 2
(3-D)

(E.4)

Note that k_ is the largest eigenvalue of the flux matrix A, and k_ is the largest

eigenvalue of the flux matrix C. The differencing operators are defined:

(E.5)

The forward and backward differencing operators A and V are defined in a

similar way in the _ direction.

The explicit dissipation terms are more complicated. In the present model, the

explicit artificial viscosity is broken up into two terms:

DE = DE_ + DE_ (E.6)

The explicit dissipation term in the _-direction is defined as:

where:

89

t_(_ = k(_)max(oi4,j, oi,i, oi+Lj)

p_q,j - 2pi,j + p_j[
oi,j =

pi+l,j + 2pi,j + pi-_[

(4) max(0,k(4)_ _._2))¢i_ = (E.8)

Usually, k(2) = 0.25 and k(4) = 0.01. The term _ is defined in Eq. (E.4).

The explicit dissipation term in the _-direction (and the r I direction for 3-D) is

defined in a similar manner.

Near the boundaries of the computational grid, the fourth order dissipation term

poses a problem. With the model given by Eq. (E.6), information is needed at five nodes

for the computation of the explicit dissipation term. When the grid point adjacent to the

boundary is reached, there are only four nodes available. Therefore, special expressions

must be developed for use next to the boundaries.

To accomplish this, ghost points are defined outside of the computational domain

(on the i--0 line and the i = imax+l line). Values on these lines are defined by extrapolating

from the interior of the domain:

qo,j = 2q_,j- qzj (E.9)

and similarly for the i=imax+l line.

This provides enough information to use Eq. (E.7) to compute the fourth order

dissipation term.

9O

APPENDIX F

THE BALDWIN-LOMAX TURBULENCE MODEL

The Baldwin-Lomax model is an algebraic turbulence model which computes an

eddy viscosity which can be added to the molecular viscosity to obtain an effective

viscosity:

tteffecti_ = l.tmolecukr +)Xtu_ (F.1)

A two-layer model is defined for the eddy viscosity. Near the wall, the eddy

viscosity is proportional to the local vorticity and the distance from the wall multiplied by

the Prandti-Van Driest damping factor. Thus,

l_b,irme r - pL21oJI (F.2)

where

2II _u_wto = -- (2-D)
0x

I_,1= _-_j -_ ÷ (3-D)

91

L --- KzD (F.3)

Here, k = 0.4 is the von Karman constant, z is the normal distance from the wall,

and D is the Prandtl-Van Driest damping factor, which smoothly goes to zero at the wall:

(F.4)

The subscript 'w' refers to values at the wall.

The outer layer uses this formula to compute eddy viscosity away from the body:

Ftturb, outer = K cCq_OFwakeF_z) (F.5)

where K c = 0.0168 is the Clauser's constant, and Ccp = 1.6 is an empirical constant.

Also,

F_ake = mi tZmaxFma_(0"25ZmaxU 2 tFmax
(F.6)

and Zma x and Fma x are at the maximum of

,-, (,,
(F.7)

92

In thewakeregion,theexponentialisdropped.

Thelast definitions are:

(v) (vo w2)2 2 2 2 2
Udif= U +V +w max" +V + rain (3-D)

Fldeb =

(F.8)

where Fkleb is the Klebanoff intermittency correction, which smoothly reduces the eddy

viscosity to zero in the far field. The Klebanoff constant is Ckleb, which is taken to be

0.3.

The switch between the inner layer and outer layer eddy viscosity occurs at z =

Zcrossove r. This crossover value of z is defined as the closest point to the wall where the

inner and outer eddy viscosities are equal. Thus,

f _tueo, innerfor z a zc_souer \1

Pine° = \ pmeo, o_r for z _ Z_o_r f
(F.9)

93

APPENDIX G

INITIAL AND BOUNDARY CONDITIONS

The Navier-Stokes equations are parabolic in time and elliptic in space. To solve

a parabolic equation, a marching procedure is used. This means that the solution is

marched in time from some meaningful initial solution until the desired time level, or a

steady-state solution, is reached. An impulsive start from rest is the initial condition set in

this investigation. Thus, the flow properties off the solid body are set to freestream

conditions for the initial solution.

Elliptic equations require the values of the variables on the boundaries to be

specified. This means that meaningful values of the flow properties must be assigned on

the boundaries of the computational grid. These boundary values effectively define the

problem that is being solved, so care should be taken in their selection.

Outer Boundaries

For external flows, the outer boundary of the computational grid is placed far

from the body. For unsteady flow problems, the outer boundary is divided into inflow and

outflow boundaries. On inflow boundaries, the freestream values of all the flow variables

are used. On outflow boundaries, p, u, v, and p are specified by extrapolating from the

values from adjacent grid points. Then e is calculated from these.

In 2-D, different boundary conditions can be used for steady flow problems. For

steady inviscid flows, I-D Riemann invariants are used with a circulation correction. The

Riemarm invariants are defined:

94

R- = Vn 2a
"_-1

R + = Vn + 2a
y-1 (G.I)

where V n is the local normal velocity:

V
;_u + ;yW

n _/2 2x + _z ((3.2)

The local tangential velocity is given as:

Wt=
_ -_xw

2_x+_z (G.3)

Eq. (G. 1) and (G.3) give three equations for specifying the four flow, variables.

The fourth equation, which is for the entropy parameter S, is given by:

(G.4)

The procedure used is as follows. First, the boundary is defined as an inflow or

an outflow boundary, using Eq. (G.2). On an inflow boundary, V n < 0 and the Riemann

invariant R- is constant along waves that run upstream (from the interior of the grid).

95

Thus, R-, V t, and S are computed using freestrearn values and the other invariant, R +, is

extrapolated from the interior. These are used to update the flow variables p, u, v, and e.

On an outflow boundary, V n > 0, and R +, V t, and S are extrapolated from the interior

while R- is specified using freestream values.

Another outer boundary condition used for steady flows is a circulation

correction. Lift is generated by circulation about an airfoil. Since the outer boundary is far
I

from the airfoil, the airfoil can be modeled as a point vortex with circulation G, located at

the quarter-chord. G is defined:

r = 2LM_c C_ (G.5)

where C1 is the lift coefficient, c is the chord length of the airfoil, and _ is the freestream

Mach number.

The velocity perturbation caused by this vortex is:

_
VP - 2nr{1 - M_sin:_0 - a)}

(G.6)

where r is the radius measured from the airfoil quarter-chord and 0 the angle measured

from the airfoil eenterline, and a is the angle of attack of the airfoil.

The corrected boundary velocities due to this vortex are:

Ub= u®+ Vpsin 0

Wb= w®+ VpCOS 0 (G.7)

96

It canbeseenthattheperturbationvelocity decreaseslinearly with distance;if

theouterboundaryis far enough away, this effect is negligible. If this correction is used,

however, the outer boundary may be moved much closer to the airfoil with no loss in

accuracy.

To satisfy the condition for constant enthalpy, the speed of sound must also be

corrected using the free.stream enthalpy H_:

"',: <1
(G.8)

The last outer boundary is the wake cut aft of the airfoil. Flow properties are

simply averaged across this cut, since the variation is smooth in this region.

In 3-D, there are two additional outer boundaries at the root of the wing (j=l),

and at the far-field off the tip (j=jmax). At the root, a symmetry condition (spanwise

derivative = 0) is used:

4qi,2,k - qi,3,k

qiA,k = 3
(G.9)

used.

At the (j=jmax) station, the unsteady boundary conditions described above are

Solid Boundaries

The boundary conditions on the wall are dictated by whether the flow is viscous

or inviscid. In both analyses, the fluid has no normal velocity component with respect to

97

thebody. This givesriseto the 'no penetration' condition on the contravariant velocity W,

which is normal to the body:

W = _t+ U_x+ W_z= 0 (2-D)

w +U x+V_y+ W_z= 0 (3-D) (G.9)

The tangential contravariant velocity U for inviscid flow is extrapolated from the

points adjacent to the body. For viscous flows, U is set to zero (no slip). The physical

velocities u and w can then be determined from the contravariant velocities.

The density on the body is extrapolated from the adjacent two points in the normal

direction using:

Pi,1 = 2pi2- Pi3 (O. 10)

The surface pressure satisfies the condition:

which is numerically approximated by:

i_P=O

(o.11)

(4pi,2-Pi,3)

piA = 3 (O.12)

Using these conditions, the total energy may be determined.

98

Forsimplicity, the boundary conditions are calculated explicitly at the end of each

call to the Newton iteration routine.

99

REFERENCES

1. Borland, C.J. and Rizzetta, D., "Nonlinear Transonic Flutter Analysis," AIAA Paper
81-0608-CP, AIAA Dynamic Specialists Conference, 1981.

2. Rizzetta, D.P. and Borland, C., "Numerical Solution of Unsteady Transonic Flow
over Wings with Viscous-Inviscid Interaction", AIAA Paper 82-0352, January 1982.

3. Batina, J. T., "Unsteady Transonic Algorithm Improvements for Realistic Aircraft
Applications", AIAA Paper 88-0105, January 1988.

4. Sankar, L.N., Malone, J.B., and Tassa, Y., "An Implicit Conservative Algorithm for
Steady and Unsteady Three-Dimensional Transonic Potential Flows", AIAA Paper 81-
1016-CP, June 1981.

5. Malone, J.B. and Sankar, L.N., "Application of a Three-Dimensional Steady and
Unsteady Full Potential Method for Transonic Flow Computations", AFWAL-TR-84-
3011, Flight Dynamics Laboratory, Wright Patterson Air Force Base, Dayton, Ohio, 1984.

6. Shankar, V., Ide, H., Gorski, J. and Osher, S., "A Fast, Time-Accurate Unsteady Full
Potential Scheme", AIAA Paper 85-1512-CP, July 1985.

7. Pulliam, T.H., and Steger, J.L., "Implicit Finite Difference Simulations of Three-

Dimensional Compressible Flow", AIAA Journal, Vol. 18, 1980.

8. Batina, J.T., "Unsteady Euler Solutions Using Unstructured Dynamic Meshes", AIAA
Paper No. 89-0115, January 1989.

9. Sankar, L. N. and Tang, W., "Numerical Solution of Unsteady Viscous Flow past
Rotor Sections", AIAA Paper 85-0129.

10. Wake, B. E. and Sankar, L. N., "Solution of the Navier-Stokes Equations for the
Flow About a Rotor Blade", Journal of the American Helicopter Society, April 1989.

11. Rai, M. M._ "Navier-Stokes Simulations of Rotor-Stator Interaction Using Patched
and Overlaid Grids", AIAA Paper 85-1519-CP, July 1985.

12. Gatlin, B. and Whitfield, D. L., "An Implicit Upwind Finite Volume Scheme for
Solving the Three-Dimensional Thin-Layer Navier-Stokes Equations", AIAA Paper 87-
1149-CP, June 1987.

13. Sankar, L. N. and Kwon, O. J., "Viscous Flow Simulation of Fighter Aircraft",
AIAA Paper 91-0278, January 1991.

100

14. Saad, Y. and Schultz, M.H, "GMRES: A Generalized Minimum Residual Algorithm

for Solving Nonsymmetric Linear Systems", SIAM J. Sci. Stat. Comp., Vol. 7, No. 3,
1986, pp.856-869.

15. Wigton, L. B., Yu, N. J., and Young, D. P., "GMRES Acceleration of
Computational Fluid Dynamics Codes", AIAA Paper 85-1494-CP, 1985.

16. Venkatakrishnan, V. and Mavriplis, D. J., "Implicit Solvers for Unstructured

Meshes", ICASE Report 91-40, May 1991.

17. Saad, Y. and Semeraro, B. D., Application of Krylov Exponential Propagation to

Fluid Dynamics Equations", AIAA Paper 91-1567-CP, 1991.

18. Beam, R. M. and Warming, R. F., "An Implicit Factored Scheme for the

Compressible Navier-Stokes Equations," AIAA Journal, Vol. 16, No. 4, April, 1976.

19. Swanson, R. C. and Turkel, E., "Artificial Dissipation and Central Difference
Schemes for the Euler and Navier-Stokes Equations", AIAA Paper 87-1107-CP, June
1987.

20. Steger, J. L., "Implicit Finite Difference Simulation of Flow about Arbitrary Two-
Dimensional Geometries", AIAA Journal, Vol. 18, No. 2, pp. 159-167, Feb. 1980.

21. McAlister, K.W., Pucci, S.L., McCroskey, W.J., and Carr, L.W., "An

Experimental Study of Dynamic Stall on Advanced Airfoil Section, Volume 2: Pressure
and Force Data", NASA TM 84245, Sept. 1982.

22. Stagg, A.K., Cline, D.D., Shadid, J.N., and Carey, G.F., "A Performance
Comparison of Massively Parallel Parabolized Navier-Stokes Solutions', AIAA Paper 93-
0059, Jan. 1993.

23. Yoon, S. and Kwak, D., "Implicit Navier-Stokes Solver for Three Dimensional

Compressible Flows," AIAA Journal, Vol. 30, No. 11, Nov. 1992.

101

10 -4

10.5

d*
"_ 10-6

om

N

•_ 10
0

m

10 -8

%

0 100 200 300 400 500 600 700 800

CPU seconds

Figure 1
• Histo for the Calculation of a

Comparison of the Global Residual ry
S"teady Inviscid Transonic Flow about a NACA 0012 Airfoil

(Moo = 0.8; o_= 1.25 °)

?-°

102

0 100 200 300 400 500 600 700 800

CPU seconds

Figure 2
Comparison of the Lift Coefficient History for the Calculation of a

Steady Inviscid Transonic Flow about a NACA 0012 Airfoil
(Moo = 0.8; a = 1.25 °)

103

10-4 [, , , , , , , , . . . j , , , -RL:?.adiRL210

_.. --- -RL2 20

, "-.10 "5 , ---..

' "'_ . - RL280

• ""'_''"_"'_

" %..._. _

10-6

_. __....

10 -7 _

10" ' ' ' , . , , --I- ,-,--- -, ! , , ,

0 200 400 600 800 1000

CPU time (sec)

Hgure 3

Comparison of the Global Residual History for Calculation of a

Steady Inviscid Transonic Flow about a NACA 0012 Airfoil

(Moo = 0.8; u = 1.25 °)

104

10 "5

10.6

1o.7
i
_ lO.8

0 200 400 600 800 1000

C_U rac

Figure 4

Comparison of the Global Residual History for the Calculation of a

Steady Viscous Flow about a NACA 0012 Airfoil

(Moo = 0.283; cz = $.0°; Re = .3,450,000)

105

Cl

0.6

0.5

0.4

0.3

0.2

0.1

0

0 100 200 300 400 500 600 700 800

CPUsec

Figure 5

Comparison of the Lift Coefficient History for the Calculation of a

Steady Viscous Flow about a NACA 0012 Airfoil
(M= = 0.283; u = 5.0°; Re = 3,450,000)

106

Cp

-2

-1.5

-1

-0.5

0

0.5

1

1.5

---- -CPL (40)

CPU (40)

D CPL

0 CPU

._.. ---_ ---- .__

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

x/c

Figure 6

Comparison of the Pressure Coefficient for the Calculation of a

Steady Viscous Flow about a NACA 0012 Airfoil
(Moo -- 0.283; c_ -- 5.0°; Re ---3,450,000)

i ° -- --

107

0.15

0.1

0.05

o

-0.05

-0.1

-0.15

0 90 180 270 360

phase anBle (des)

Figure 7

Effect of Time Step on GMRES Result for Lift Coefficient of a

Plunging NACA 64-A010 Airfoil in Inviscid Transonic Flow
(M_ = 0.8; k - 0.2)

108

0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

0 90 180
p_$e angle(des)

270 360

Figure 8

Effect of Time Step on GMRES Result for Moment Coefficient of a

Plunging NACA 64-A010 Airfoil in Inviscid Transonic Flow
(Moo = 0.8; k = 0.2)

7

#

[
i
t
t

199

2.5

2

1.5

Cl

1

0.5

0

O O
O

O

O
O

O

O

0

B

5 10 15 20 25 30

alpha (deg)

Figure 9

Comparison of GMRES (20/20) with Experimental Results for the
Lift Coefficient of a Pitching NACA 0012 Airfoil

(Moo = 0.283; k = 0.151; Re = 3,450,000)

110

0.1

0

Cm -0.2

--0.5

0 o
0

0 5 10 15 20 25 30

alpha (deg)

Figure 10

Comparisono_GMRES(20/20)with_p_r_e_,t_l Re_ult_fo_the
Moment Coefficient ot a Pitching NACA 0012 Airfoil

(Moo -- 0.283; k = 0.151; Re - 3,450,000)

111

Cd

1

0.8

0.2

0 O

O

O
O

-0.2

5 10 15 20 25 30

alpha (deg)

Figure 11

Comparison of GMRES (20/20) with Experimental Results for the
Drag Coefficient of a Pitching NACA 0012 Airfoil

(Moo = 0.283; k = 0.151; Re -- 3,450,000)

112

10 "8

150 160 170 180 190 200 210 220 230

time

Figure 12

Global Residual History of a GMRES (20/20) Calculation of the

Flow about a Pitching NACA 0012 Airfoil

(M_ = 0.283; k = 0.151; Re = 3,450,000)

113

cl

2.5

2

1.5

1

0.5

0

150 160 170 180 190 200 210 220 230
time

Figure 13
Effect of Directions on the GMRES (x/20) Results for the Lift

Coefficient of a Pitching NACA 0012 Airfoil
(Moo = 0.283; k = 0.151; Re = 3,450,000)

i

114

0.1

0

-0.1

-0.3

-0.4

-0.5

150 160 170 180 190 200 210 220 230

time

Figure 14

Effect of Directions on the GMRES (x/20) Results for the Moment

Coefficient of a Pitching NACA 0012 Airfoil
(Moo = 0.283; k ---0.151; Re = 3,450,000)

115

10"_ [;'' ' i'''' I'' '' I i''' I I'''" I'' '" i 1

'_ _oe [-s..:i,-f-]-r.Li,!__,llill,L,IJ., II , -.!

L_

10 -8

150 160 170 180 190 200 210 220 230
time

Figure 15
Effect of Directions on the GMRES 0d20) Results for the Global

Residual of a Pitching NACA 0012 Airfoil Calculation
(Moo = 0.283; k = 0.151; Re = 3,450,000)

116

2.5

2

1.5

1

0.5

0

-----CI (20120) I
-------Cl (5110)

..... CI(I 0120)

150 160 170 180 190 200 210 220 230

time

Figure 16

Comparison of GMRES 0d2x) Results for the Lift Coefficient of a

Pitching NACA 0012 Airfoil
(M_ = 0.283; k ---0.151; Re = 3,450,000)

117

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

150 160 170 180 190 200 210 220 230
time

Figure 17

Comparison of GMRES (x/2x) Results for the Moment Coefficient
of a Pitching NACA 0012 Airfoil

(Moo = 0.283; k = 0.15t; Re = 3,450,000)

Q

I" I : "i

I # I $ IIII

.

10 -8

150 160 170 180 190 200 210 220 230
time

118

Figure 18

Comparison of GMRES (x/2x) Global Residual Histories for the

Calculation of Flow about a Pitching NACA 0012 Airfoil
(Moo = 0.283; k = 0.151; Re = 3,450,000)

119

.5 I i I I i I

\ I---_°"°' I / t
g "sf \ I-"'_"_"1 _ l

1

O.s

G"
0 -

150 160 170 180 190 200 210 220 230

time

Figure 19

Comparison of GMRES (x/2x) Results for the Lift Coefficient of a
Pitching NACA 0012 Airfoil

(Moo --"0.283; k = 0.151; Re = 3,450,000)

L

!

/.

i
i

!

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

150 160 170 180 190 200 210 220 230
time

120

Figure 20
Comparison of GMRES (x/2x) Results for the Moment Coefficient

of a Pitching NACA 0012 Airfoil
, (Moo = 0.283; k = 0.151; Re = 3,450,000)

10"5 !_'"' '"" ;"", '''''l''''''''_i J'"'_i
E I ;i _1

i • ll|t I. ,, .!::. . :i
I. Ill _! j liii, I I i • I
L[__I,_ ,,l , IL|J,,II ! -I I : * d

. ..,,' _ _ ,_,,, ,,_ .I !, _ : J ' ,

10. 7 '"1

10 -8

150 160 170 180 190 200 210 220 230

time

121

Figure 21

Comparison of GMRES (x/2x) Global Residual Histories for the

Calculation of Flow about a Pitching NACA 0012 Airfoil
(M_ = 0.283; k = 0.151; Re = 3,450,000)

L.

3.-

|

10.6

10 -7

150 160 170 180 190 200 210 220 230
time

122

Figure 22
Restarted GMRES (5:5/20) Global Residual History for Flow about

a Pitching NACA 0012 Airfoil
(Moo -- 0.283; k = 0.151; Re = 3,450,000)

2.5

123

2

1.5

1

0.5

0

150 160 170 180 "190 200 210 220 230

time

Figure 23
Restarted GMRES (5:5/20) Results for the Lift Coefficient of a

Pitching NACA 0012 Airfoil
(Moo --"0.283; k ---0.151; Re - 3,450,000)

124

10 "5

|

.D
0

m

10 "6

10 "7

150 160 170 180 "190 200 210 220 230

time

Figure 24

Dynamic Restart GMRES (5d57/20) Global Residual History for
Flow about a Pitching NACA 0012 Airfoil

(Moo = 0.283; k -- 0.151; Re = 3,450,000)

125

2.5

2[/q F a,,o/_o,-Tq i

1.5

0.5

0

150 160 170 180 190 200 210 220 230
time

Figure 25

Dynamic Restart GMRES (5d57/20) Results for the Lift Coefficient

of a Pitching NACA 0012 Airfoil

(Moo = 0.283; k = 0.1S1; Re -- 3,450,000}

10 .4

|
q

- 10 -6

10.8
_3

CPU sec

126

Figure 26

Comparison of the Mulfigrid Global Residual History for the

Calculation of a Steady Inviscid Transonic How about a NACA 0012

Airfoil (Moo= 0.S; a = 1.25°)

127

Q

10- 5

_ 10 -7

10.8
o

10-9

0 200 400 600 800 1000

CPU sec

Figure 27
r,,,_,,_.,._tm of the Multi_rid Global Residual History for the

C:l:-u"l_tiono'f a Steady Viscous Flow about, NACA 0012 Airfoil
(Moo = 0.283; a ffi5.0°; Re ffi3,450,000)

cl

2.5

2

1.5

1

0.5

0

128

-Cl (20/20)

.... Cl (5:5120)

..... Cl (5fcf/20)

B.

150 160 170 180 190 200 210 220 230
time

Figure 28

Mulfigfid GMRES Results for the Lift Coefficient of a Pitching
NACA 0012 Airfoil

(Moo = 0.283; k - 0.151; Re = 3,450,000)

!

129

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

150 160 170 180 190 200 210 220 230
tlme

Figure 29

Multigrid GMRES Results for the Moment Coefficient of a Pitching
NACA 0012 Airfoil

(M_, = 0.283; k = 0.151; Re = 3,450,000)

130

|
.P
W

m

u

o
m

10.6

/

150 160 170 180 190 200 210 220 230

time

Figure 30

Multigrid GMRES Global Residual History for the calculation of

Flow about a Pitching NACA 0012 Airfoil

(Moo = 0.283; k ---0.151; Re = 3,450,000)

131

10 .4

10 .5

m

olmm

10 .6
m

t_

_o
r_

10 -7

0 2000 4000 6000
CPU see

Figure 31

Comparison of the Global Residual History for the Parallel
Calculation of a Steady Viscous Flow about a NACA 0012 Airfoil

(Moo = 0.283; a -- 5.0°; Re = 3,450,000)

132

0

= 1000

100

%

1 10 100

Number of processors.

Figure 32

Comparison of the Speedup Achieved to the Ideal Speedup

(CPU Time Required for 1000 Iterations)

133

C
!11

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

0 200 400 600 800 1000 1200

itn

Figure 33

Comparison of the Moment Coefficient History for the Parallel

Calculation of a Steady Viscous Flow about a NACA 0012 Airfoil

(Moo " 0.283; a = 5.0*; Re = 3,450,000)

134

10 "4 l l '

= 10-5

10 .6
omi

t_

@

10 -s

0 2000 4000 6000
CPU see

Figure 34

Comparison of the Global Residual History for the Parallel GMRES

Calculation of a S_eady Viscous Flow about a NACA 0012 Airfoil

(Moo = 0.283; ot = 5.0°; Re = 3,450,000)

135

10 .4

E
_- 0-5el

e,i

e_

10 .7

o
m

10 .8

[] r128

.¢ r1216

0 1000 2000 3000 4000
CPU time (sec)

Figure 35

Comparison of the Global Residual History for the Parallel
Calculation of a Steady Viscous Flow about a NACA 0012 Airfoil

Using Block Cydic Reduction
(Moo ---0.283; a = 5.0°; Re = 3,450,000)

136

\

@
om

om

104

1

II I

• /1000 im
[_, CPUtime

up

i

411

i II

10
number of processors

100

Figure 36

Comparison of the Speedup Achieved to the Ideal Speedup with

Block Cyclic Reduction

(CPU Time Required for 1000 Iterations) J

137

10 -4

e,l

,.a

omm

0
m

10 -s

C r12 8

[] r1232

_r12 8/5d/global

0 1000 2000 3000 4000
CPU time (sec)

Figure 37
Comparison of the Global Residual History for the Parallel GMRES

Calculation of a Steady Viscous Flow about a NACA 0012 Airfoil
Using Block Cydic Reduction

(Moo --0.283; a -- 5.0°; Re = 3,450,000)

138

m

=
"O
em

m

.o
o

O

10 .4

10 -6

10 -s

i0-'o

- c rt2 (ADI/n3=-5)
_ _ -r12 (20d/ID=5)

--._-rl2 (20d/ID=20)

0 500 1000 1500 2000 2500
CPU see

Figure 38

Effect of the Implicit Dissipation Coefficient on the GMRES

Calculation of a Steady Viscous Flow about an F5 Wing
(Moo = 0.9; a = 0.0°; Re = 11,000,000)

139

0.01

0

Cj -0.02-0.03
m |

m |

-0.04 "- -'

-0.05

-0.06 I i I I

0 500 1000 1500 2000
CPU sec

2500

Figure 39

Comparison of the Mid-Half Span Lift Coefficient for the GMRES

Calculation of a Steady Viscous Flow about an F5 Wing
(Moo = 0.9; ct ---0.0"; Re ---11,000,000)

140

-0.4

-0.2
o0
_. 0

" 0.2

0.4

"_ 0.6

0.8

1

1.2

[O Cp 18.1% (Experiment)

/--o-cp 18.1 (ADI/m=5) |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
X

Figure 40

Comparison of the Pressure Coefficient for the GMRES Calculation

of the Steady Viscous Flow about an F5 Wing

(Moo = 0.9; u = 0.0"; Re = 11,000,000; z = 0.181)

141

E
t..
@

l

om

0
m

10 .4

10.6

10 "s

r12 (LU-SGS / b = 0.1)

._. r12 (5d/b = 0.1)

r12 (20d / b = 0.1)

0 500 1000 1500 2000 2500
CPU sec

Figure 41

Comparison of GMRES [LU-SGS Global Residual Histories for an

F5 Wing in Inviscid Transonic Flow
(Moo = 0.9; ot = 0.00)

142

E
L.
O

¢q

D

eJ

m

¢¢
.O
O

m

10 "6

10 -g

10 .9

r12 (20d / b = 0.1)

r12 (20d / b = 0.9)

¢ r12 (20d / b = 0.7)

' f12 (20d / b = 0.65)

0 500 1000 1500 2000 2500
CPU see

Figure 42

Effect of 13Parameter on GMRES (20) Computations of Steady

Inviscid Transonic Flow about an F5 Wing
(Moo = 0.9; a = 0.0")

143

0 Cp upper (Exp)

i:! Cp lower (Exp)

.... _ (ADr_

0

0 0.2 0.4x/0.6 0.8 1 1.2

Figure 43

Comparison of 3-D ADI with Experimental Results for the

Imaginary Component of the Pressure Coefficient on an F5 Wing
with an Oscillating Trailing Edge Flap

(Moo = 0.9;, f = 20 Hz; Re = 11,000,000; z = 0.181)

(or = 0.0°; aflap = 0.50)

144

-6 i J ' J " JO J

-4 0

-2

•_ 0

2
0

4 - [] Cp lower (Exp)
:i Cp (ADI) []

r7
.,I I

6 i I

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
X

Figure 44

Comparison of 3-D ADI with Experimental Results for the Real

Component of the Pressure Coefficient on an F5 Wing with an

Oscillating Trailing Edge Flap

(Moo --- 0.9, f = 20 Hz; Re = 11,000,000; z = 0.181)

(ct = 0.0°; aflap = 0.5 °)

145

-0.02

-0.015

-0.01

C -0.005

0

0.005

0.01

0 2 4 6time8 10 12 14

Figure 45

Comparison of 3-D GMRES with ADI Results for the Moment

Coefficient on an F5 Wing with an Oscillating Trailing Edge Flap

(Moo-" 0.9;, f -- 20 Hz; Re = 11,000,000; z = 0.181)

((x = 0.0°; oLflap = 0. 5°)

146

10-9 ., I I

0 2 4 time 6

I I

8 10

Figure 46

Effect of Time Step on the GMRES (S/x) Results for the Global

Residual of the Transonic Viscous Flow about an F5 Wing with an

Oscillating Trailing Edge Flap

(Moo = 0.9;, f = 20 Hz; Re = 11,000,000; z --- 0.181)

(ct = 0.0°; ctfla p = 0.5*)

147

• 0 Cpupper(Exp)

I Cp lower (Exp)

0 0 Cp (ADI)

0.8 .. --. cr, (5/10)

0.6 //_ _n0)0.4

o
-0.2 "

-0.4 o',,,_t:] D O

-0.6

-0.2 0 0.2 0.4/0.6 0.8 1 1.2

Figure 47

Comparison of 3-D GMRES Results for the Imaginary Component

of the Pressure Coefficient on an F5 Wing with an Oscillating

Trailing Edge Flap

(Moo = 0.9;, f -- 20 Hz; Re -- 11,000,000; z = 0.181)

(or = 0.0°; ctflap = 0.5 °)

148

J

0

[] Cplower(Exp) _ b

.... Cp (ADI) ",,/
Cp (5/I0) 0

- - -Cp (5/20)

0 0.2 0.4 0.6 0.8 1 1.2
x

Figure 48

Comparison of 3-D GMRES Results for the Real Component of the

Pressure Coefficient on an F5 Wing with an Oscillating Trailing Edge

Flap

(Moo-- 0.9; f = 20 Hz; Re = 11,000,000; z = 0.181)

((z = 0.0°; ctfla p -- 0.5 °)

149

4

3

2

' -2

-3

-4

0 Cp lower (exp)

rn Cp upper (exp)

Cp (ADI)

..i........0.
E_ 0

0

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
x/c

Figure 49

Comparison of 3-D ADI with Experimental Results for the

Imaginary Component of the Pressure Coefficient on an F5 Wing

Undergoing Modal Vibration

(Moo = 0.9; f = 40 Hz; z = 0.181)

(a- 0.0"; %aax = 0.5*)

150

m_

10

5

0

-5

O Cp upper (exp)
i
!

! [] Cp lower (exp)

' Cp real (ADI)

-10

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
x/c

Figure 50

Comparison of 3-D ADI with Experimental Results for the Real
Component of the Pressure Coefficient on an F5 Wing Undergoing

Modal Vibration

(Moo = 0.9; f = 40 Hz; z = 0.181)

(_t= 0.o°; o.max= 0.5°)

151

0.01

0.005

0

C -0.005

-0.01

-0.015

-0.02

-0.025

0 2 4 6 8 10
time

Figure 51

Comparison of 3-D GMRES (5/x) with ADI Results for the Mid-

Half Span Moment Coefficient on an F5 Wing Undergoing Modal
Vibration

(Moo= 0.9;f - 40 Hz)
(a = 0.0°; Omax = 0.5 °)

152

E
t-
O

¢'1

J

t_

"D
omm

t_

O

L_

10 .6
r12 (5/10)

•,. r12 (5/20)

..... r12 (5/40)

0 2 4 6 8 10
time

Figure 52

Comparison of 3-D GMRES (5/x) Global Residual Histories for the
Invlscld Flow about an F5 Wing Undergoing Modal Vibration

(Moo ffi 0.9; f = 40 Hz)

(or = O.O°; O-max = 0.50)

153

Figure 53

Comparison of 3-D GMRES (5/x) Results for the Imaginary
Component of the Pressure Coefficient on an F5 Wing Undergoing

Modal Vibration

(Moo = 0.9; f -- 40 Hz)

(ct = 0.00; O.max = 0.5°; z = 0.181)

154

-0.2 0 0.2 0.4x/cO.6 0.8 1 1.2

Figure 54

Comparison of 3-D GMRES (S/x) Results for the Imaginary

Component of the Pressure Coefficient on an 1:5 Wing Undergoing
Modal Vibration

(Moo ffi 0.9; f = 40 Hz)

(ct = 0.00; O.max = 0.5°; z = 0.181)

155

Cp upper(Exp)

lower(Exp)

-0.2 0 0.2 0.4x/0.6 0.8 1 1.2

Figure 55

Comparison of 3-D GMRES (5/x) Results for the Real Component

of the Pressure Coefficient on an F5 Wing Undergoing Modal

Vibration

(Moo = 0.9; f = 40 Hz)

(cx = 0.00; C_ax = 0.5°; z = 0.181)

156

m

10

5

0

-5

0 Cp upper (Exp)

r'l Cp lower (Exp)

-10

-0.2 0 0.2 0.4x/cO.6 0.8 1 1.2

Figure 56

Comparison of 3-D GMRES (5/x) Results for the Real Component

of the Pressure Coefficient on an F5 Wing Undergoing Modal
Vibration

(Moo = 0.9; f = 40 Hz)

((z = 0.0°; Olnax = 0-5°; z -- 0.181)

157

4

3

2

1

0

- - -cr, (5/40)-2 : b",
_------mmm ,"/,I h ',
13 '1'1
n°nD° r"\,'.o

-1 -

-2 "

-3 "

-4

-0.2

I I

0 0.2

| I

I a -' t t

0.4x/c0.6 0.8 1 1.2

Figure 57

Comparison of 3-D GMRES (5/40) Restart Results for the

Imaginary Component of the Pressure Coefficient on an F5 Wing

Undergoing Modal Vibration
(Moo = 0.9; f - 40 Hz)

(ct = 0.0°; %ax = 0.5°; z = 0.181)

158

-0.2 0 0.2 0.4x/c0.6 0.8 1 1.2

Figure 58

Comparison of 3-D GMRES (5/40) Restart Results for the

Imaginary Component of the Pressure Coefficient on an F5 Wing

Undergoing Modal Vibration
(Moo = 0.9; f = 40 Hz)

(a = 0.o°; amax= 0.5°;z = 0.181)

159

C d2 (5/40) - l
10 "6 _ rt2(5/40)- 2

_ rl2 (5/40) - 3
r" -'- rl2 (5/40) - 4

i0._

=

i0 -s

0 2 4 6 8 10
time

Figure 59

Comparison of 3-D GMRES (5/40) Restart Results for the Global

Residual of the Inviscid Flow about an F$ Wing Undergoing Modal
Vibration

(Moo= 0.9; f = 40 Hz)

(c¢ = 0.00; O_a x = 0.5°; z = 0.181)

160

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
x/e

Figure 60

Effect of Time Step on the GMRES Result for the Imaginary

Component of the Pressure Coefficient about an F5 Wing

Undergoing Modal Vibration

(Moo ffi 0.9;, f ---40 Hz)

:' (a = 0.0°; amax = 0.5°; z = 0.181) "_-_--

